Presentation is loading. Please wait.

Presentation is loading. Please wait.

Short Version : 16. Temperature & Heat 短版: 16.温度&熱量

Similar presentations


Presentation on theme: "Short Version : 16. Temperature & Heat 短版: 16.温度&熱量"— Presentation transcript:

1 Short Version : 16. Temperature & Heat 短版: 16.温度&熱量

2 16.1. Heat , Temperature & Thermodynamic Equilibrium 熱量,温度 & 熱力平衡
State at which macroscopic properties of system remains unchanged over time. 巨觀屬性不隨時間改變的系統狀態。 Examples of macroscopic properties: L, V, P, , , … 巨觀屬性的例子: 長度,體積,壓力,密度,電阻,… 2 systems are in thermal contact if heating one of them changes the other. 如果把兩個系統中的一個加熱,其它一個會有變化,那這兩個系統就說有熱接觸。 Otherwise, they are thermally insulated. 否則,它們之間是熱絕緣。 A,B in eqm B,C in eqm A,C in eqm Two systems are in thermodynamic equilibrium  they have the same temperature 兩個系統在熱力平衡中  它們温度相同 0th law of thermodynamics : 2 systems in thermodynamic equilibrium with a 3rd system are themselves in equilibrium. 熱力學第零定律: 兩個系統分別和第三個系統成熱力平衡,則它們彼此也在熱力平衡中。

3 Gas Thermometers & the Kelvin Scale 氣體温度計 & 克氏溫標
Constant volume gas thermometer T  P 定容氣體温度計 Kelvin scale 克氏溫標: P = 0  0 K = absolute zero 絕對零度 Triple point of water 水的三相點  K 真空 Triple point 三相點: T at which solid, liquid & gas phases co-exist in equilibrium 固,液,氣三相共存於平衡狀態的温度 氣體 水銀 輭管 Mercury fixed at this level by adjusting h  P  T. 調整 h  P  T.來維持水銀面於此。 All gases behave similarly as P  0. 所有氣體在 P  0 時,性質都差不多。

4 Temperature Scales 溫標 Celsius scale 攝氏 ( C ) :
Melting point of ice 冰融點 at P = 1 atm  TC = 0 C. Boiling point of water 水沸點 at P = 1 atm  TC = 100 C.  Triple point of water 水的三相點 = 0.01C Fahrenheit scale 華氏 ( F ) : Melting point of ice 冰融點 at P = 1 atm  TF = 32 F. Boiling point of water水沸點 at P = 1 atm  TF = 212 F. Rankine scale 蘭氏 ( R ) :

5 16.2. Heat Capacity & Specific Heat 熱容量 & 比熱
Heat capacity C of a body : 一個物體的熱容量 C Q = heat transferred to body. 傳到物體的熱 Specific heat c = heat capacity per unit mass 比熱 c = 單位質量的熱容量 1 calorie (15C cal) = heat needed to raise 1 g of water from 14.5C to 15.5C. 1 卡路里 (15C cal) = 把一公克的水從14.5C 升至 15.5C所需熱量。 1 BTU (59F) = heat needed to raise 1 lb of water from 58.5F to 59.5F. 1 英熱單位 (59F BTU) = 把一英磅的水從 58.5 F 升至 59.5 F 所需熱量。

6 c = c(P,V) for gases  cP , cV .
一些常見材料的比熱* 比熱 水泥 玻璃 水銀 石(花岡) 水: 液態 冰,10C 除非特別標明,温度範圍都是 0 C 到100 C c = c(P,V) for gases  cP , cV .

7 The Equilibrium Temperature 平衡温度
Heat flows from hot to cold objects until a common equilibrium temperature is reached. 熱從高到低温處流動,直到各處温度均為同一平衡温度為止。 For 2 objects insulated from their surroundings: 對兩件與外界絕熱的物體來說: When the equilibrium temperature T is reached: 當達到平衡温度 T 時

8 16.3. Heat Transfer 熱傳遞 Common heat-transfer mechanisms: 常見的熱傳遞機制:
Conduction 傳導 Convection 對流 Radiation 輻射

9 Conduction 傳導 Conduction: heat transfer through direct physical contact. 傳導: 熱靠物體的直接接觸來傳遞。 Mechanism: molecular collision. 機制: 分子碰撞 Heat flow 熱流量 H , [ H ] = watt 瓦 : Thermal conductivity 熱導率 k , [ k ] = W / mK

10 熱導率 空氣 鋁 水泥 (隨混比改變) 銅 玻璃纖維 玻璃 鵝絨 氦 鐵 鋼 保麗龍 水: 木(松) Conductor 導體
insulator絕緣體

11 Specific Heat vs Thermal Conductivity 比熱對熱導率
c ( J/kgK ) k (W/mK ) Al 900 237 Cu 386 401 Fe 447 80.4 Steel 502 46 Concrete 880 1 Glass 753 0.8 Water 4184 0.61 Wood 1400 0.11

12   applies only when T = const over each (planar) surface
For complicated surface, use 截面形狀複雜時,需用 Prob. 72 & 78. Composite slab 複合平板 : H must be the same in both slabs to prevent accumulated heat at interface H 必需在兩塊板內都一樣才能避免熱累積在界面中 Thermal resistance : 熱阻: [ R ] = K / W Resistance in series 阻力串聯

13 Insulating properties of building materials are described by the R-factor ( R-value ) .
= thermal resistance of a slab of unit area 單位面積板塊的熱阻 U.S.

14 例 油費 一幢房子的牆璧由石膏板( R = 0.17 ) , R-11 玻璃纖維隔熱綿, 三夾板 (R = 0.65 ) ,和杉木牆面板 (R = 0.55 ) 拼成。 屋頂也一樣,祇是改用R-30 玻璃纖維隔熱綿。 冬天時,平均 T 戶外是 20 F ,室內是 70 F 。 房子的火爐每加侖油可產生 100,000 BTU ,油價是每加侖 $2.20。 每月的油費是多少 ?

15 Convection 對流 涼 T      rises 上升 燙
Convection = heat transfer by fluid motion 對流 = 源自流體流動的熱傳遞 T      rises 上升 Convection cells in liquid film between glass plates (Rayleigh-Bénard convection, Benard cells) 玻璃片之間液體的對流細胞 ( 瑞利-比那對流,比那細胞 )

16 Radiation 輻射 Glow of a stove burner  it loses energy by radiation 火爐發光  它的能量以輻射散失 Stefan-Boltzmann law for radiated power: 輻射功率的史特凡-波茲曼定律  = Stefan-Boltzmann constant 史特凡-波茲曼常數 = 5.67108 W / m2 K4. A = area of emitting surface 發射面積. 0 < e < 1 is the emissivity ( effectiveness in emitting radiation). 是發射率 (輻射的發射効率 ) e = 1  perfect emitter & absorber ( black body ) 完美發射體 &吸收體 (黑體) Black objects are good emitters & absorbers. 黑的東西是好的發射體 &吸收體 Shiny objects are poor emitters & absorbers. 亮的東西是不好的發射體 &吸收體

17 Stefan-Boltzmann law 史特凡-波茲曼定律 :
Wien‘s displacement law 維恩位移定律 : max = b / T  P  T4  Radiation dominates at high T 輻射在高温時為主導 Wavelength of peak radiation becomes shorter as T increases. 輻射高峯的波長隨 T 增大而變短 Sun ~ visible light. 太陽 ~ 可見光 Near room T ~ infrared. 室温 ~ 紅外線

18 Example 16.5. Sun’s Temperature 太陽的温度
The sun radiates energy at the rate P = 3.91026 W, & its radius is 7.0 108 m. 太陽以 P = 3.91026 W 的功率輻射能量,它的半徑是 7.0 108 m. Treating it as a blackbody ( e = 1 ), find its surface temperature. 把它當成是一個黑體 ( e = 1 ) ,找出它的表面温度。  = 5.67108 W / m2 K4 top of atm : 1390 W/m2. Mean dist ./. Earth & sun : 1.5 1011m.

19 Conceptual Example 15.1. Energy-Saving Windows 省能窗户
Why do double-pane windows reduce heat loss greatly compared with single-paned windows? 為甚麼雙層玻璃窗的隔熱効果比單層的大很多 ? Why is a window’s R-factor higher if the spacing between panes is small? 為甚麼窗户的 R-因子會在玻璃間隔小的時候增大? And why do the best windows have “low-E” coatings? 為甚麼最好的窗户都有 “低 E” 外鏌 ? Thermal conductivity (see Table 16.2) 熱導率 (見表 16.2) : Glass 玻璃 k ~ 0.8 W/mK Air 空氣 k ~ W/mK Layer of air reduces heat loss greatly & increases the R-factor . 加一層空氣可以減少散熱和增大 R-因子。 This is so unless air layer is so thick that convection current develops. 這需要空氣層不能太厚,以免產生對流。 “low-E” means low emissivity, which reduces energy loss by radiation. “低 E” 表示低放射率,以減少幅射散熱。

20 Making the Connection 連起來
Compare the for a single pane window made from 3.0-mm-thick glass with that of a double-pane window make from the same glass with a 5.0-mm air gap between panes. 比較一片 3.0-mm 厚的單層玻璃窗和一片用同樣玻璃,中留 5.0-mm 空隙的雙層玻璃窗。 Glass 玻璃 k ~ 0.8 W/mK Air 空氣 k ~ W/m  K

21 16.4. Thermal Energy Balance 熱能的平衡
A house in thermal-energy balance. 一幢熱能已達平衡的房子 System with fixed rate of energy input tends toward an energy- balanced state due to negative feedback. 以固定速率引進能量的系統,都會因為負回饋而趨於能量平衡的狀態。 Heat from furnace balances losses thru roofs & walls. 從火爐來的熱能彌補了從屋頂和牆璧的流失。

22 Example 16.7. Solar Greenhouse 太陽能温室
A solar greenhouse has 300 ft2 of opaque R-30 walls, 一個太陽能温室有 300 ft2 的不透明 R-30 牆, & 250 ft2 of R-1.8 double-pane glass that admits solar energy at the rate of 40 BTU / h / ft2. 和 250 ft2 的 R-1.8 雙層玻璃 (其太陽能穿透率為 40 BTU / h / ft2)。 Find the greenhouse temperature on a day when outdoor temperature is 15 F. 找出一天戶外温度為 15 F 時,温室的温度。

23 Application: Greenhouse Effect & Global Warming 應用:温室効應和地球暖化
Average power from sun : 從太陽來的平均功率 入射陽光 Total power from sun : 從太陽來的總功率 Power radiated (peak at IR) from Earth : 自地球輻射掉的功率 (峰點在紅外線) 外放紅外線 natural greenhouse effect 自然温室効應 Mars : none 火星 : 無 (96% CO2 , P ~ .01 atm, T ~ 46C ) Venus : huge 金星 : 巨 (96% CO2 , P ~100 atm, T ~ 460C ) C.f.  T   15 C Greenhouse gases : H2O, CO2 , CH4 , … passes incoming sunlight, absorbs outgoing IR. 温室氣體: H2O, CO2 , CH4 , …把進來的陽光放行,出去的紅外線吸收。

24 0.6 C increase during 20th century. 二十世紀期間增加 0.6 C 。
二氧化碳濃度百萬分之一體積比 CO2 increased by 36% 二氧化碳增加 36% 工業年代開始 温度偏差 0.6 C increase during 20th century. 二十世紀期間增加 0.6 C 。 1.5 C – 6 C increase by 2100. 公元 2100 年時增加 1.5 C – 6 C。


Download ppt "Short Version : 16. Temperature & Heat 短版: 16.温度&熱量"

Similar presentations


Ads by Google