声音素材编辑与处理.

Slides:



Advertisements
Similar presentations
音频编辑 第4章第4章. 第 4 章 音频编辑 4.1 数字音频概述 4.2 Audition 音频编辑技术 4.3 习题和思考 内容提要.
Advertisements

第 3 章、音訊媒體. 2 本章大綱 音訊原理 音訊儲存格式 音訊播放 3 影響測量結果的因素 – 以溫度測量為例 測量時間間隔 間隔愈短, 測量次數愈多, 資料愈詳細 間隔愈長, 測量次數愈少, 資料愈粗略 測量單位 單位愈小, 精確度愈高, 需記錄的內容多 單位愈大, 精確度愈低, 需記錄的內容少.
第六章 音频信息及处理 Shan dong Economics University.
第 7 章 数字音频处理技术 7.1 基本概念 7.2 获取声音 7.3 处理声音 7.4 保存声音文件 ■ 声音概念 ■ 声音频率分布
第一章 声现象 第一章 声现象.
第5章 音频与视频资源获取与处理.
第五章 音频素材制作与处理.
第4章 多媒体音频处理技术.
第7讲 CoolEdit简单应用.
第三章 数据类型和数据操作 对海量数据进行有效的处理、存储和管理 3.1 数据类型 数据源 数据量 数据结构
学习数字音频的基础知识和对数字音频进行编辑操作的基本技能。
6.1 任务三 使用录音机软件录制、编辑声音 二、使用“录音机”软件录制声音 从开始菜单中的附件点击“录音机”命令,打开“录音机”窗口。
多媒体技术及应用 2017年9月9日星期六 第二章 多媒体音频技术 第二章 多媒体音频技术.
4.1 音频信号概述 4.2 音频信号的获取与处理 4.3 话音信号的参数编码 4.4 乐器数字接口MIDI 4.5 声卡概述
第八章 多媒体技术基础.
请你表演.
第二章 音频信息的获取与处理 数字音频基础 音频卡的工作原理 音频编码基础和标准 音乐合成和MIDI规范.
C++中的声音处理 在传统Turbo C环境中,如果想用C语言控制电脑发声,可以用Sound函数。在VC6.6环境中如果想控制电脑发声则采用Beep函数。原型为: Beep(频率,持续时间) , 单位毫秒 暂停程序执行使用Sleep函数 Sleep(持续时间), 单位毫秒 引用这两个函数时,必须包含头文件
计算机基础知识 丁家营镇九年制学校 徐中先.
目标 理解多媒体的基本概念、多媒体信息及技术的特点、多媒体技术的应用。掌握多媒体计算机系统的基本组成及简单原理。
多媒体音频信息处理 音频信号及其概念 模拟音频的数字化过程 声卡 音频文件的格式与处理软件 乐器数字接口-MIDI.
多媒体技术与网页设计 ——音频模块 制作人:马秀麟 2018/11/11 第六讲 2015年4月修订.
数字音频技术 曾兰芳 教育技术学院
第二章音訊媒體.
数字化音频、视频的 采集与加工 信息技术组.
第8章 多媒体技术简介. 第8章 多媒体技术简介 1.多媒体技术的概念 1、多媒体的概念 媒体数据的类型 多媒体的定义 呈现信息所用的数据 文本 图形/图像 声音 动画/视频 多媒体的定义 把两种或两种以上的媒体材料有机地组织起来,能够从不同的视角更好地呈现特定的信息 用于处理和组织多种媒体材料的技术.
第二章 声音和语音编码 南通大学计算机应用教研室.
第9章 声卡与音箱 9.1 声卡 9.2 音箱.
上篇 多媒体技术基础 掌握:多媒体概念 多媒体的关键技术 多媒体软硬件环境 声音及视频基本处理技术 声音及视频文件常用格式.
第八章 菜单设计 §8.1 Visual FoxPro 系统菜单 §8.2 为自己的程序添加菜单 §8.3 创建快捷菜单.
声音的格式 Wav:目前最通用的格式,音质好,但是文件较大 Mp3:目前互联网上音乐的主流,文件小,CD级的音质
数 控 技 术 华中科技大学机械科学与工程学院.
第四章 数字音频基础 授课教师:.
数字媒体技术基础 (第3章 数字音频技术) 周苏 教授 浙江大学城市学院 QQ:
PPT素材的处理 —— 音频的处理.
第六章 素材的加工与处理 第12讲 音频素材的类型及GoldWave简介
逆向工程-汇编语言
CPU结构和功能.
§7.4 波的产生 1.机械波(Mechanical wave): 机械振动在介质中传播过程叫机械波。1 2 举例:水波;声波.
多媒体技术 中南大学信息科学与工程学院 黄东军.
宁波市高校慕课联盟课程 与 进行交互 Linux 系统管理.
宁波市高校慕课联盟课程 与 进行交互 Linux 系统管理.
这首歌是在线播放的,平时同学们听 歌都是在线听的吗? MP3播放器 CD 录音带 现场演唱 ……
K60入门课程 02 首都师范大学物理系 王甜.
晶体管及其小信号放大 -单管共射电路的频率特性.
晶体管及其小信号放大 -单管共射电路的频率特性.
第4章 Excel电子表格制作软件 4.4 函数(一).
iSIGHT 基本培训 使用 Excel的栅栏问题
《手把手教你学STM32-STemWin》 主讲人 :正点原子团队 硬件平台:正点原子STM32开发板 版权所有:广州市星翼电子科技有限公司
音频处理及数字化.
第六章 素材的加工与处理 第13讲 用GoldWave进行音频的截取、合并、淡入淡出操作
第二章 音频信息的获取与处理.
集成与非门在脉冲电路中的应用 实验目的 1. 了解集成与非门在脉冲电路中 的某些应用及其原理。 2. 学习用示波器观测波形参数与
魏新宇 MATLAB/Simulink 与控制系统仿真 魏新宇
Python 环境搭建 基于Anaconda和VSCode.
声音信号数字化 信息工程学院 宋 荣 杰.
《手把手教你学STM32-STemWin》 主讲人 :正点原子团队 硬件平台:正点原子STM32开发板 版权所有:广州市星翼电子科技有限公司
多媒体技术 中南大学信息科学与工程学院 黄东军.
图片与视频数字化. 图片与视频数字化 图片分类 根据图片的构成元素来分 位图: 由像素组成,计算机按顺序存储每个像素点 的颜色信息的保存方式获得的图片。 位图放大后会模糊失真,存储空间相对较大。 矢量图: 由图元组成,通过数学公式计算获得的图片。 放大后不会失真,占用空间小。
C++语言程序设计 C++语言程序设计 第一章 C++语言概述 第十一组 C++语言程序设计.
信号发生电路 -非正弦波发生电路.
高中信息技术基础_第五章音频视频图像信息加工
第8章 创建与使用图块 将一个或多个单一的实体对象整合为一个对象,这个对象就是图块。图块中的各实体可以具有各自的图层、线性、颜色等特征。在应用时,图块作为一个独立的、完整的对象进行操作,可以根据需要按一定比例和角度将图块插入到需要的位置。 2019/6/30.
FVX1100介绍 法视特(上海)图像科技有限公司 施 俊.
基于学案制作ppt 录屏工具使用 郑建彬.
B12 竺越
使用Fragment 本讲大纲: 1、创建Fragment 2、在Activity中添加Fragment
工业机器人入门使用教程 ESTUN机器人 主讲人:李老师
第9章 多媒体技术.
学习目标 1、什么是列类型 2、列类型之数值类型.
Presentation transcript:

声音素材编辑与处理

本章重点: 声音概述 音乐合成与MIDI 数字音频压缩标准 数字音频处理实例

声音在本质上是一种机械振动,它通过空气传播到人耳,刺激神经后使大脑产生一种感觉。在一些专业场合,声音通常被称为声波或音频。

4.1 声音概述 声音在物理学上称之为声波,是通过一定介质(如空气、水等)传播的一种连续振动的波,也称为声波。 通常把频率范围为20Hz~20kHz的信号称为音频信号。低于20Hz的信号为亚音信号或者称为次音信号;高于20kHz的信号称为超音频信号,或称为超声波信号。

常见声源及其频率范围:

声音的特征: 声音有3个重要指标即振幅、周期和频率。振幅是波的高低幅度,表示声音的强弱;周期指两个相邻波之间的时间长度;频率指每秒振动的次数,以Hz为单位。 声音的3要素是音调、音色、强度,它们分别与声波的频率、波形、振幅等相关

4.2 数字化音频 声音信号是时间和幅度上都连续的模拟信号。而计算机只认识“0”和“1”,或者说计算机只能处理一个个数据,尽管数据量可能是巨大的。所以,计算机处理声音的第一步是将声音数字化,将模拟信号变为数字信号。

4.2.1音频的数字化 把模拟声音(音频)信号转换位数字化声音(音频)的过程称为声音(音频)的数字化,或称为模/数(A/D)变换。

1. 采样 在音频数字化过程中,采样指的是以固定的时间间隔T对模拟信号(音频信号)进行取值。固定的时间间隔T称为采样周期,1/T称为采样频率(fs)。采样后得到的是一个离散时间信号。采样时间间隔T越短,也就是采样频率越高,声音数据在后期播放时保真度越好。

2. 量化 采样后的音频信号需要经过量化,使信号幅度转变为有限的离散数值。这种由有限个数值组成的信号就称为离散幅度信号。 例如,假设输入电压的范围是0V~7V,并假设它的取值只限定在0,1,2,…,7共8个值。如果采样得到的幅度值是1.2V,则它的取值就应是1V,如果采样得到的幅度值是2.6V,则它的取值就应是3V等。 这种数值就称为离散数值,即量化值。量化之后得到的是时间离散、幅度离散的数字信号。

3. 编码 编码,即是将量化值表示成为二进制数的形式,以便于计算机存储和处理。例如,上面量化规定的8个取值,就可以用3位二进制数表示,从000~111,2V可以表示为001,3V可以表示位011,6V可以表示位101。 计算机可以对数字化之后的音频信号进行存储、编辑和处理,并可以还原成原始的波形进行播放,这个还原的过程称为解码,它是模/数(A/D)变换的逆过程,及数/模(D/A)变换。

4.2.2 数字音频音质与数据量 采样频率和采样量化级数是数字化声音的两个最基本要求,直接影响数字化音频的质量和数据量。一般而言,采样频率越高声音失真越小,但用于存储音频的数据量也越大。量化位数越高音质越好,数据量越大。 通常有3中采样频率:44.1kHz(取样44 100次每秒,用于CD品质的音乐)、22.05kHz(适用于语音和中等品质的音乐)、11.025kHz(低品质),量化精度分别为8位字长(256阶)量化(低品质)和16位字长(65 535阶)量化(高品质)。

4.2.2 数字音频音质与数据量 反映音频数字化质量的另一个因素是通道(或声道)个数。一次采样一个声音波形,称为“单声道”;一次采样两个声音波形,称为“双声道”(即人们常说的立体声)。立体声更能反映人的听觉感受。但数据量比单声道多一倍,这样需要的存储空间是单声道的两倍。对声音的采样可以使用不同的采样频率、采样量化级数和声道,但实际上为了节省存储空间,经常要在数字化音频数据量的的大小与声音回放质量之间进行权衡。

声音信息数字化后的数据量计算公式为: 数据量=采样频率*量化位数*声道数/8 数据量的单位:B/s(字节/秒)

音质与数字音频参数的关系

4.2.3 数字音频文件格式 数字音频数据是以文件的形式保存在计算机中的。数字音频的文件格式主要又CD、WAVE、MP3、WMA、MIDI等。 CD文件:*.cda格式,采用44.1kHz的采样频率,速率为88kbps。具有16位量化位数,CD音轨近似无损,声音基本上终于忠于原声。 WAV文件:微软公司开发的一种声音文件格式,也称波形声音文件,是最早的数字音频格式,被Windows平台及其应用程序广泛支持。

4.2.3 数字音频文件格式 MP3音频文件:全称为MPEG-1 audio layer3,其压缩率为12:1。优势是在高压缩比的情况下,还能拥有优美的音质。它利用知觉音频编码技术,即利用了人耳的特性,消减音乐中人耳的特性,消减音乐中人耳听不到的成分,同时尽可能地维持原来的声音质量。 WMA文件:Windows Media Audio,通过减少数据流量但保持音质的方法来达到比MP3压缩率更高的目的。WMA的一个优点是压缩率高,,一般都在18:1.其次,WMA的内容提供商可以加入防复制保护。

4.2.3 数字音频文件格式 MID:Musical Instrument Digital Interface,允许数字合成器和其他设备交换数据。MIDI文件格式由MIDI继承而来。MIDI文件并不是一段录制好的声音,而是记录声音的信息,每个音符记录为一个数字,然后是告诉声卡如何再现音乐的一组指令。1分钟MIDI音乐文件的大小只有5~10KB。 Real Audio:Real network推出的一种音乐压缩格式;它的压缩比可达到96 :1 ,因此在网上比较流行。经过压缩的音乐文件可以通过速率为14.4kb/s的MODEM上网的计算机中流畅回放。

4.2.4 数字音频获取 声音文件的获取是为音频的编辑进行素材积累阶段。声音的获取途径很多,可以采用以下方式进行获取。 自己亲自录制 从CD唱盘获得 从网上和素材库获取

4.2.5 数字音频的处理 专业的音频编辑软件GoldWave功能强大,可以对音乐进行播放、录制、编辑、转换格式、特技处理等。 GoldWave支持多种声音格式,如WAV、MP3、AU、AVI、MPEG、MOV、RAW、SDS等。其主要功能有: 音频文件的格式转换:,它还支持MAC计算机所使用的声音文件。因此,通过GoldWave可以实现这种格式的转换。 音频数据的简单编辑 声音效果的处理 音频的修复 CD音乐提取 声音文件的生成 声音文件的录制

GoldWaved的界面与窗口 GoldWaved的界面

4.3 音乐合成与MIDI 音乐合成的方式根据一定的协议标准,使用音乐符号来记录和解释乐谱,并组合成相应的音乐信号,这就是MIDI(musical instrument digital interface,乐器数字接口)。 MIDI不是把音乐的波形进行数字化采样和编码,而是将数字式电子乐器的弹奏过程以命令符号的形式记录下来,如按了哪个键、力度多大、时间多长等。当需要播放出这首乐曲时,根据记录的乐谱指令,通过音乐合成器生成音乐声波,经放大后由扬声器播出。

1. 电子音乐中常用的术语 (1)音乐合成器(musical synthesizer) 音乐合成器是由数字信号处理器(DSP)和其他集成电路芯片构成的电子设备,用来产生并修改正弦波形,然后通过声音产生器和扬声器发出特定的声音。不同的合成器根据MIDI乐谱指令产生的音色和音质都可不同,其发声的质量和声部取决于合成器能够同时播放的独立波形的个数、控制软件的能力,以及合成器电路中的存储空间大小。

(2)复调(polyphony) 复调也称复音,指合成乐器同时演奏若干音符时发出的声音。如钢琴、吉他等乐器可以同时演奏几种音符,而双簧管就不能。复调着重于同时演奏的音符数,如钢琴的合弦音符。

(3)多音色(timbre) 多音色指同时演奏几种不同乐器时发出的声音。它着重于同时演奏的乐器数。例如,具有6音符复音的4种乐器合成器,可以同时演奏4种不同声音的6个音符,如3个钢琴的合弦音符、一个长笛、一个小提琴和一个萨克斯管的音符。要改善合成音乐的真实感,必须把许多合成器连接起来,以产生复调声音和多音色声音。

2. MIDI标准相关的术语 MIDI电子乐器:它是能产生特定声音的合成器,如电子键盘、吉他、萨克斯管等;它们相互间的数据传送符合MIDI的通信约定。 MIDI消息(message)或指令:MIDI软件通信协议,实际上是用数字指令描述的音乐乐谱,其中包括音符、强度、定时及乐器的指派等。 MIDI接口(interface):MIDI硬件通信协议,可使电子乐器互联或与计算机硬件端口相连,可发送和接收MIDI消息。 MIDI通道(channel):MIDI标准提供了16个通道,每种通道对应一种逻辑的合成器,即对应一种乐器的合成。 音序器:它指可用来记录、编辑和播放MIDI文件的计算机程序。

4.3.2 MIDI音乐的制作原理 1. MIDI音乐的产生过程

2. MIDI通道 当MIDI设备交流信息时,需要遵循一定的事件序列。例如,两个MIDI设备在建立连接之后首先要做的事情就是在使用相同的MIDI通道方面达成一致。MIDI可以在16个这样的通道上进行操作,这些通道用数字分别标记为0~15。只要两个MIDI设备进行交流,就必须使用相同的通道。对电脑合成音乐,每个逻辑通道可指定一种乐器,音乐键盘可设置在这16个通道之中的任何一个,而MIDI声源或者声音模块可被设置在指定的MIDI通道上接收。

3. MIDI接口和计算机的连接 MIDI接口由3个端口组成:输入端口(In)、输出端口(Out)和直达端口(Thru)。其中,输入端口处理接收的字节,即那些发自其他MIDI设备。 为了将两个MIDI设备连在一起,可以将其中一个的输出端口和另一个的输入端口相连,这样第一个设备就可以控制第二个设备同时发生。MIDI设备可以级联,即第一个设备的输出连接第二个设备的输入,第二个的输出再连接第三个的输入等。

4. MIDI音乐合成器 MIDI制造商协会制定了通用MIDI规格,简称GM规格。通用MIDI规格同时定义了GM音色库(一个音色库,也被称为音色映射,支持128种乐器声音)和GM打击音色库(只包含打击乐器发出的声音),另外还定义了其他一些与音乐相关的性能,如每个GM设备应支持的声音数量和MIDI消息种类。 MIDI合成的产生方式有两种:FM合成和波表合成。

4.3.3 MIDI文件的特点 用乐谱指令代替声音数据 有效记录和重现各种乐器声音 占用存储空间极小 适合乐曲创作和远距离传输

4.4 数字音频压缩标准 音频压缩方法是指对原始数字音频信号流(PCM编码)运用适当的数字信号处理技术,在不损失有用信息量,或者所引入损失可忽略的条件下,降低(压缩)其码率,也称为压缩编码。逆变换的过程,称为解压缩或解码。

4.4.2 数字音频压缩标准 音频信号是多媒体信息的重要组成部分。音频信号分为电话质量的语言、调幅广播质量的音频信号和高保真立体声信号。针对不同的质量标准,制定了相应的压缩标准。

1. 电话质量的音频压缩编码技术标准 由于数字音频压缩技术具有广阔的应用范围和良好的市场前景,因而音频压缩技术的标准化工作显得十分重要。CCITT(现ITU-T)在语音信号压缩的标准化方面做了大量的工作,制定了G.771、G.721、G.728等标准,并逐渐受到业界的认同,其他语音相关标准有:H.221、H.222、H.223、H.233、H.231、H.242、H.245、H.261、H.263等。

2. 调幅广播质量的音频压缩编码技术 标准 调幅广播质量音频信号的频率范围为50Hz 2. 调幅广播质量的音频压缩编码技术 标准 调幅广播质量音频信号的频率范围为50Hz ~7kHz。CCITT在1988年制定了、G.722标准。此 标准采用16kHz采样频率,14bit量化,信号数据 传输速率为224kbps,并采用子带编码方法,将 输入音频信号经滤波器分成高子带和低子带两个 部分,分别进行ADPCM编码,再混合形成输出 码。

3. 高保真度立体声音频压缩编码技术 标准 高保真立体声音频信号频率范围为50Hz~20kHz,采用44.1kHz采样频率,16bit量化,进行数字化转换,其数据传输速率每声道达705kbps。 一般语音信号的动态范围和频响比较小,采用8kHz采样频率,每样值用8bit表示,现在的语音压缩技术可把码率从原来的64kbps压缩到4kbps左右。但多媒体通信中的声音要比语音复杂的多,它的动态范围可达100db,频响范围可达20Hz~20kHz。因此,声音数字化后的信息量非常达。为了更有效地利用宝贵的信道资源,必须对声音进行数字压缩编码。

目前世界上第一个高保真立体声音频压缩标准为MPEG音频压缩算法。虽然MPEG音频标准是MPEG标准的一部分,但它也完全可以独立使用。表4-2中列出了ISO和ITU先后建议的用于电话质量的语音压缩标准。

4.4.3 音频压缩工具 由于存在不同格式的音频文件,在不同场合对于音频素材的格式要求也不尽相同,因此需要有专门的工具对它们进行格式转换,从而满足不同场合对音频文件的需要。 AVI MPEG WMV RM to MP3 Converter是一个好用的音频转换工具,可以将通用的视频和音频文件转换成MP3、WAV、WMA和OGG格式,支持AVI、MPEG、RM/RMVB、WMV/ASF、MOV的视频和音频格式。 对于想从视频文件中抓取音频和想把RM格式转换成MP3/WAV格式的用户来说非常有用。

音频压缩工具界面

4.5 数字音频处理实例 利用GoldWave软件录制一首自己演唱的歌曲,采样频率设为44.1kHz,生成.wav文件;并为生成的音乐文件添加混响效果,对声音进行简单的编辑与特殊处理,为音乐文件添加淡入淡出效果,最后将文件压缩成.mp3格式的文件。

4.5.1 利用GoldWave进行录音 1)将麦克风插入计算机声卡的麦克风插口。 2)执行“开始” →“程序” →“GoldWave”命令,打开GoldWave程序,设定录音源为“麦克风”,进行参 数适当设置。 3)在主窗口执行“文件” →“新建”菜单命令,打开“新建声音”对话框,在对话框中对参数进行设置。 4)在播放器中,单击“录音”按钮开始录音,录制过程中一条从左至右的垂直线指示录音的进程。 5)录音结束后,播放录音,录音效果满意后,执行“文 件” →“另存为”菜单命令。将声音文件保存为.wav格式,文件名称为“我的音乐”。

4.5.2 为音乐文件添加混响效果 1)在GoldWave窗口中,执行“文件” →“打 开”菜单命令,打开录制好的“我的音乐.wav”文件。 3)在回声对话框中,调整两次声音的延迟时间 和音量。 4)混响效果制作结束后,执行“文件” →“另 存为”命令,保存为“我的音乐2.wav”。

4.5.3 将文件转换为.mp3格式的文件 1)在GoldWave主窗口中执行“文件” →“打开”命令,打开调整好的“我的音乐2.wav”文件。 2)选择“文件” →“另存为”菜单命令,并在保存文件画面中,选择“MPEG音频(*.mp3)”文件类型,单击“确定”按钮。

谢谢