第十章 多媒体数据压缩技术 计算机网络与多媒体技术.

Slides:



Advertisements
Similar presentations
第四章 多媒体数据压缩编码技术 多媒体数据压缩编码技术的重要性和 分类 多媒体数据压缩编码技术的重要性和 分类 量化 统计编码 预测编码 变换编码 多媒体数据压缩编码的国际标准.
Advertisements

音频编辑 第4章第4章. 第 4 章 音频编辑 4.1 数字音频概述 4.2 Audition 音频编辑技术 4.3 习题和思考 内容提要.
第 3 章、音訊媒體. 2 本章大綱 音訊原理 音訊儲存格式 音訊播放 3 影響測量結果的因素 – 以溫度測量為例 測量時間間隔 間隔愈短, 測量次數愈多, 資料愈詳細 間隔愈長, 測量次數愈少, 資料愈粗略 測量單位 單位愈小, 精確度愈高, 需記錄的內容多 單位愈大, 精確度愈低, 需記錄的內容少.
「我是剪輯&簡報達人」 --電影教學法在語文領域之應用
MPEG Family.
学习和了解多媒体数据压缩的必要性和可能性、多媒体数据的常用压缩编码方法、常用压缩编码的基本原理和处理方法,以及图像、视频压缩的国际标准和流媒体基础知识。 了解多媒体大容量存储技术的作用和应用 ,掌握数据光盘的刻录及光盘拷贝的方法。
第 9 章 多媒體.
MTI 多媒体技术 第七讲 XIDIAN 国际视频压缩标准简介.
第4章 多媒体音频处理技术.
第三章 数据类型和数据操作 对海量数据进行有效的处理、存储和管理 3.1 数据类型 数据源 数据量 数据结构
第7章 多媒体技术与应用 多媒体技术概述 音频的数字化处理 图像的数字化处理 视频的数字化处理字化处理 多媒体数据压缩技术 大学计算机基础
網頁介面設計的基礎理論 講師:鄭靜怡 本教材內容出自於網頁界面設計藝術教程,人民郵電出版社.
第 9章 多媒体技术基础.
《多媒体应用基础》 第五章 数字视频处理技术 第5章 数字视频处理技术.
影视制作必备知识.
第八章 多媒体技术基础.
第四次大作业 登陆学校图书馆网站的电子数据库
请你表演.
第五章 視訊媒體.
数字音频技术 曾兰芳 教育技术学院
第二章音訊媒體.
数字化音频、视频的 采集与加工 信息技术组.
Windows 8 more simple more powerful more free.
第8章 多媒体技术简介. 第8章 多媒体技术简介 1.多媒体技术的概念 1、多媒体的概念 媒体数据的类型 多媒体的定义 呈现信息所用的数据 文本 图形/图像 声音 动画/视频 多媒体的定义 把两种或两种以上的媒体材料有机地组织起来,能够从不同的视角更好地呈现特定的信息 用于处理和组织多种媒体材料的技术.
多媒體元素.
第9章 声卡与音箱 9.1 声卡 9.2 音箱.
面向对象建模技术 软件工程系 林 琳.
上篇 多媒体技术基础 掌握:多媒体概念 多媒体的关键技术 多媒体软硬件环境 声音及视频基本处理技术 声音及视频文件常用格式.
5.1 不同的視像屬性 5.2 常見的視像檔案格式 5.3 在視像檔案容量與質素之間取得平衡 5.4 按需要選擇視像檔案格式
管理信息结构SMI.
常見的聲音格式 MP3 聲音格式:有鑑於WAV 聲音檔實在太大, 因此就產生了MP3 聲音格式。其利用MPEG 壓縮法將音樂進行失真性壓縮, 一段50 MB 左右的WAV 檔轉成MP3格式之後, 往往只剩下 4、5 MB。 雖然MP3 是採用失真性壓縮的演算法, 但還能維持不錯的音質, 一般人並無法聽出轉換前後的細微差別。同時也因為儲存空間大幅減少而廣受歡迎。
第11章:一些著名开源软件介绍 第12章:服务安装和配置 本章教学目标: 了解当前一些应用最广泛的开源软件项目 搭建一个网站服务器
基于全方位视觉的多人体运动检测跟踪 利用全方位摄像机获取360˚ 的环境信息,在室内对多个人体目标进行实时运动检测。
Windows网络操作系统管理 ——Windows Server 2008 R2.
网 站 设 计 与 建 设 Website design and developments
第十章 IDL访问数据库 10.1 数据库与数据库访问 1、数据库 数据库中数据的组织由低到高分为四级:字段、记录、表、数据库四种。
第17章 网站发布.
DM8148与DM8127 ISS框架讲解 广州创龙电子科技有限公司
第六章 素材的加工与处理 第12讲 音频素材的类型及GoldWave简介
第十章 方差分析.
数据挖掘工具性能比较.
CPU结构和功能.
多媒体技术 中南大学信息科学与工程学院 黄东军.
第3章 信息与信息系统 陈恭和.
宁波市高校慕课联盟课程 与 进行交互 Linux 系统管理.
程序设计工具实习 Software Program Tool
图片与视频数字化. 图片与视频数字化 图片分类 根据图片的构成元素来分 位图: 由像素组成,计算机按顺序存储每个像素点 的颜色信息的保存方式获得的图片。 位图放大后会模糊失真,存储空间相对较大。 矢量图: 由图元组成,通过数学公式计算获得的图片。 放大后不会失真,占用空间小。
现代教育技术应用 第六章 素材的加工与处理 第19讲 动画的类型和采集 单 位: 北京师范大学 作 者: 毛荷&王翠霞.
Three stability circuits analysis with TINA-TI
VisComposer 2019/4/17.
Cassandra应用及高性能客户端 董亚军 来自Newegg-NESC.
计算机网络与网页制作 Chapter 07:Dreamweaver CS5入门
多媒体技术 中南大学信息科学与工程学院 黄东军.
音频处理及数字化.
魏新宇 MATLAB/Simulink 与控制系统仿真 魏新宇
GIS基本功能 数据存储 与管理 数据采集 数据处理 与编辑 空间查询 空间查询 GIS能做什么? 与分析 叠加分析 缓冲区分析 网络分析
声音信号数字化 信息工程学院 宋 荣 杰.
多媒体技术 中南大学信息科学与工程学院 黄东军.
图片与视频数字化. 图片与视频数字化 图片分类 根据图片的构成元素来分 位图: 由像素组成,计算机按顺序存储每个像素点 的颜色信息的保存方式获得的图片。 位图放大后会模糊失真,存储空间相对较大。 矢量图: 由图元组成,通过数学公式计算获得的图片。 放大后不会失真,占用空间小。
基于列存储的RDF数据管理 朱敏
C++语言程序设计 C++语言程序设计 第一章 C++语言概述 第十一组 C++语言程序设计.
视频的数字化.
高中信息技术基础_第五章音频视频图像信息加工
第8章 创建与使用图块 将一个或多个单一的实体对象整合为一个对象,这个对象就是图块。图块中的各实体可以具有各自的图层、线性、颜色等特征。在应用时,图块作为一个独立的、完整的对象进行操作,可以根据需要按一定比例和角度将图块插入到需要的位置。 2019/6/30.
第十七讲 密码执行(1).
第十二讲 密码执行(上).
FVX1100介绍 法视特(上海)图像科技有限公司 施 俊.
第9章 多媒体技术.
《手把手教你学STM32-STemWin》 主讲人 :正点原子团队 硬件平台:正点原子STM32开发板 版权所有:广州市星翼电子科技有限公司
四路视频编码器 快速安装手册 1、接口说明 2、安装连接 3、软件下载 4、注意事项 编码器软件下载地址
Presentation transcript:

第十章 多媒体数据压缩技术 计算机网络与多媒体技术

多媒体关键技术 数据压缩概述 10.1 音频数据的压缩 10.2 静态图像的数据压缩 10.3 运动图像的数据压缩 10.4

10.1 数据压缩概述 由于多媒体数据量非常大,造成计算机的存储和网络传输负担 若帧速率为25帧/秒,则1s的数据量大约为25MB,一个640MB的光盘只能存放大约25s的动态图像 一幅640×480分辨率的24位真彩色图像的数据量约为900KB;一个100MB的硬盘只能存储约100幅静止图像画面 解决办法之一就是进行数据压缩,压缩后再进行存储和传输,到需要时再解压、还原。 以目前常用的位图格式的图像存储方式为例,像素与像素之间无论是在行方向还是在列方向都具有很大的相关性,因而整体上数据的冗余度很大,在允许一定限度失真的前提下,能够对图像数据进行很大程度的压缩。

10.1 数据压缩概述 数据压缩方法 无损压缩: 利用数据的统计冗余进行压缩,可完全恢复原始数据而不引入任何失真,但压缩率受到统计冗余度理论限制,一般为2:1到5:1。 多媒体应用中经常使用的无损压缩方法主要是基于统计的编码方案,如游程编码(run length)、Huffman编码、算术编码和LZW编码等等。 常用工具:WinRar、WinZip、ARC等

10.1 数据压缩概述 数据压缩方法 有损压缩: 利用了人类视觉和听觉器官对图像或声音中的某些频率成分不敏感的特性,允许在压缩过程中损失一定的信息;虽然不能完全恢复原始数据,但是所损失的部分对理解原始图像或声音的影响较小,却换来了大得多的压缩比。有损压缩广泛应用于语音、图像和视频数据的压缩。 常用的有损压缩方法有:PCM(脉冲编码调制)、预测编码、变换编码(主要是离散余弦变换方法)、插值和外推法(空域亚采样、时域亚采样、自适应)等等。 常用工具:JPEG、MPEG等

10.1 数据压缩概述 衡量一种数据压缩技术的好坏有三个重要的指标 数据压缩原理 压缩比 图像质量或音质 压缩和解压的速度 数据压缩原理 原始的多媒体信源数据存在着客观上的大量冗余。信息理论认为:若信源编码的熵大于信源的实际熵,该信源中一定存在冗余度。去掉冗余不会减少信息量,仍可原样恢复数据;但若减少了熵,数据则不能完全恢复。不过在允许的范围内损失一定的熵,数据仍然可以近似恢复。

10.1 数据压缩概述 数据压缩原理 因为人的感觉的某些不敏感性,多媒体数据中还存在着从主观感受角度看去的大量冗余,即:在人眼允许的误差范围之内,压缩前后的图像如果不做非常细致的对比是很难觉察出两者的差别的。 统计编码:无失真编码。根据信息出现概率的分布特性进行的压缩编码。 预测编码:有失真编码。根据原始的离散信号之间存在关联性的特点,利用前面的一个或多个信号对下一个信号进行预测,然后对实际值和预测值的差进行编码。

10.1 数据压缩概述 数据压缩原理 变换编码。有失真编码。对原始数据从初始空间或时间域进行数学变换,使得信号中最重要的部分在变换域中易于识别,并且集中出现,可以重点处理;相反使能量较少的部分较分散,可以进行粗处理。 三个步骤:变换、变换域采样和量化。 分析—合成编码。有失真编码。通过对原始数据的分析,将其分解成一系列更适合表示的“基元”或“参数”,编码仅对这些基本单元或参数进行。而译码时则借助于一定的规则或模型,按照一定的算法将这些基元或参数再“综合”成原数据的一个逼近。

10.1 数据压缩概述 数据压缩技术标准 H.26X。由CCITT(Consultative Committee of International Telegraph and Telephone 国际电报电话咨询委员会,从1993年3月1日起,改组为ITU)制定的标准。包括H.261、H.263、H.264,简称为H.26X 主要应用于实时视频通信领域 H.261:是ITU-T为在综合业务数字网(ISDN)上开展双向声像业务(可视电话、视频会议)而制定的,速率为64kb/s的整数倍。H.261只对CIF(352×288)和QCIF(176×144)两种图像格式进行处理。H.261是最早的运动图像压缩标准。

10.1 数据压缩概述 数据压缩技术标准 H.263:在H.261的基础上发展而来的加强版,它借鉴了MPEG-1的优点,支持PSTN,能在低带宽上传输高质量的视频流。 H.264:由ISO/IEC(IEC,国际电工委员会)与ITU-T组成的联合视频组(Joint Video Team,JVT)制定的新一代视频压缩编码标准。在相同的重建图像质量下,H.264比H.263+和MPEG-4减小50%码率,对信道时延的适应性较强,既可工作于低时延模式以满足实时业务,如会议电视等,又可工作于无时延限制的场合,如视频存储等;提高网络适应性,加强对误码和丢包的处理,提高解码器的差错恢复能力。

10.2 音频数据的压缩 音频信号压缩编码的主要依据是人耳的听觉特性,主要有两点: 1.人的听觉系统中存在一个听觉阈值电平,低于这个电平的声音信号人耳听不到 . 2.人的听觉存在屏蔽效应。当几个强弱不同的声音同时存在时,强声使弱声难以听到,并且两者之间的关系与其相对频率的大小有关 . 声音编码算法就是通过这些特性来去掉更多的冗余数据,来达到压缩数据的目的。

10.2 音频数据的压缩 声音信号的基本参数: 频率:信号每秒钟变化的次数。次声、可听声和超声 振幅:声波波形的最大位移。 音频压缩标准: 电话质量的语音压缩标准:300Hz~3.4KHz。当采样频率为8KHz,量化位数为8bit时所对应的速率为6kbit/s。 调幅广播质量的音频压缩标准:50Hz~7KHz。当使用16KHz的抽样频率和14bit的量化位数时,信号速率为224kbit/s。符合1988年ITU制定的G.722标准。 高保真立体声音频压缩标准:50Hz~20KHz。在44.1KHz抽样频率下用16bit量化,信号速率为每声道705kbit/s。目前比较成熟的标准为“MPEG音频”。

10.2 音频数据的压缩 在多媒体中,音频有很多压缩编码标准: 1. MP3音频 MP3的全名是MPEG Audio Layer-3,简单地说就是一种声音文件的压缩格式。是目前最普及的音频压缩格式,是典型的有损压缩。 MPEG-1音频压缩标准里包括了三个使用高性能音频数据压缩方法的感知编码方案 ,按照压缩质量(每Bit的声音效果)和编码方案的复杂程度分别是Layer1、Layer2、Layer3。

MPEG-1音频的层次与压缩比率 Layer1(相当于384kbps立体声信号) 4:1 Layer2(相当于192~256kbps立体声信号) 6:1~8:1 Layer3 (相当于112~154kbps立体声信号) 10:1~12:1

MP3音频 MP3是利用 MPEG Audio Layer 3 的技术,将音乐以1:10 甚至 1:12 的压缩率,压缩成容量较小的文件,换句话说,能够在音质丢失很小的情况下把文件压缩到更小的程度。而且还非常好的保持了原来的音质。正是因为MP3体积小,音质高的特点使得MP3格式几乎成为网上音乐的代名词。每分钟音乐的MP3格式只有1MB左右大小,这样每首歌的大小只有3-4兆字节。使用MP3播放器对MP3文件进行实时的解压缩(解码),这样,高品质的MP3音乐就播放出来了。

10.2 音频数据的压缩 2. MP3PRO MP3PRO,它是 Thomson Multimedia多媒体公司推出的一个MP3格式的升级版本,MP3PRO可以把声音文件压缩到原有MP3格式的一半大小,但却可以保持相同的音质。 MP3Pro制式是利用低转送速率技术(bit per sec),即平常一首MP3的频率大多是128kbit,而MP3Pro则固定于80kbit,降低码率就可以降低文件大小,把每首MP3所占空间减低到原有的5至6成;但音质却丝毫无损。

10.2 音频数据的压缩 2. MP3PRO MP3PRO文件在播放上完全与MP3兼容,也就是说,老的MP3文件可以在新的MP3PRO播放器上进行播放,同时,新的MP3PRO可以在标准的MP3软件和设备上播放,但效果可能较差,因为两者录制方式不同。

10.2 音频数据的压缩 3. OGG Ogg是一种先进的有损的音频压缩技术,正式名称是Ogg Vorbis,是一种免费的开源音频格式。OGG编码格式远比90年代开发成功的MP3先进,它可以在相对较低的数据速率下实现比MP3更好的音质。 Ogg Vorbis支持VBR(可变比特率)和ABR(平均比特率)两种编码方式, Ogg还具有比特率缩放功能,可以不用重新编码便可调节文件的比特率。

10.2 音频数据的压缩 3. OGG OGG格式可以对所有声道进行编码,支持多声道模式,而不像MP3只能编码双声道。多声道音乐会带来更多临场感,欣赏电影和交响乐时更有优势,这场革命性的变化是MP3无法支持的。在而且未来人们对音质要求不断提高, Ogg的优势将更加明显。

10.2 音频数据的压缩 4. WMA WMA (Windows MediaAudio)格式是来自于微软的重量级选手,后台强硬,音质要强于MP3格式,更远胜于RA格式,它是以减少数据流量但保持音质的方法来达到比MP3压缩率更高的目的,WMA的压缩率一般都可以达到1:18左右. WMA的另一个优点是内容提供商可以通过DRM(DigitalcentersManagement)方案如Windows Media centersManager7加入防拷贝保护。

10.2 音频数据的压缩 4. WMA WMA还支持音频流技术,适合在网络上在线播放,更方便的是不用象MP3那样需要安装额外的播放器,而Windows操作系统和WindowsMediaPlayer的无缝捆绑让你只要安装了windows操作系统就可以直接播放WMA音乐,新版本的WindowsMediaPlayer7.0更是增加了直接把CD光盘转换为WMA声音格式的功能,在新出品的操作系统WindowsXP中,WMA是默认的编码格式. 音质好的可与CD媲美,压缩率较高,可用于网络广播。

10.2 音频数据的压缩 4. WMA WMA (Windows MediaAudio)格式是来自于微软的重量级选手,后台强硬,音质要强于MP3格式,更远胜于RA格式,它是以减少数据流量但保持音质的方法来达到比MP3压缩率更高的目的,WMA的压缩率一般都可以达到1:18左右. WMA的另一个优点是内容提供商可以通过DRM(DigitalcentersManagement)方案如Windows Media centersManager7加入防拷贝保护。

10.2 音频数据的压缩 4. WMA WMA还支持音频流技术,适合在网络上在线播放,更方便的是不用象MP3那样需要安装额外的播放器,而Windows操作系统和WindowsMediaPlayer的无缝捆绑让你只要安装了windows操作系统就可以直接播放WMA音乐,新版本的WindowsMediaPlayer7.0更是增加了直接把CD光盘转换为WMA声音格式的功能,在新出品的操作系统WindowsXP中,WMA是默认的编码格式. 音质好的可与CD媲美,压缩率较高,可用于网络广播。

10.2 音频数据的压缩 5、MP4 MP4并不是MPEG-4或者MPEG-1Layer4,它的出现是针对MP3的大众化、无版权的一种保护格式。 MP4使用的是MPEG-2 AAC技术也就是俗称的a2b或AAC。其中,MPEG-2是MPEG于1994年11月针对数码电视(数码影像)提出的。它的特点就是,音质更加完美而压缩比更加大(1:15)。MPEG-2 AAC(ISO/IEC 13818-7)在采样率为8~96KHz下提供了1~48个声道可选范围的高质量音频编码。AAC就是Advanced Audio Coding(先进音频编码)的意思,适用于从比特率在8kbit/s单声道的电话音质到160kbit/s多声道的超高质量音频范围内的编码,并且允许对多媒体进行编码/解码。

MP4 AAC与MP3相比,增加了诸如对立体声的完美再现、比特流效果音扫描、多媒体控制、降噪优异等MP3没有的特性,使得在音频压缩后仍能完美的再现CD音质。 AAC技术主要由以下三个部分组成。 第一,AT&T的音频压缩技术专利。它可以将AAC压缩比提高到20:1而不损失音质。这样,一首3分钟的歌仅仅需要2.25MB,这在互联网上的下载速度是很惊人的。 第二、安全数据库。它可以为你的AAC Music创建一个特定的密钥,将此密钥存于其数据库中。同时,只有AAC的播放器才能播放含有这种密钥的文件。 第三、协议认证。这个认证包含了复制许可、允许复制副本数目、歌曲总时间、歌曲可以播放时间以及售卖许可等信息。

MP4 MP4技术的优越性要远远高于MP3,因为它更适合多媒体技术的发展以及视听欣赏的需求。但是,MP4是一种商品,它利用改良后的MPEG-2 AAC技术并强加上由出版公司直接授权的知识产权协议作为新的标准;而MP3是一种自由音乐格式,任何人都可以自由使用。此外,MP4实际上是由音乐出版界联合授意的官方标准;MP3则是广为流传的民间标准。相比之下,MP3的灵活和自由度要远远大于MP4,这使得音乐发烧友们更倾向于使用MP3。更重要的一点是,MP3是目前最为流行的一种音乐格式,它占据着大量的网络资源,这使得MP4的推广普及难上加难。

10.2 音频数据的压缩 6. WAVE WAV格式是微软公司开发的一种声音文件格式,也叫波形声音文件,是最早的数字音频格式,被Windows平台及其应用程序广泛支持。WAV格式支持许多压缩算法,支持多种音频位数、采样频率和声道,采用44.1kHz的采样频率,16位量化位数,因此WAV的音质与CD相差无几,但WAV格式对存储空间需求太大不便于交流和传播

10.3 静态图像的数据压缩 静态图像压缩技术主要是对空间信息进行压缩,目的是在满足一定图像质量的条件下,缩小图像文件所占用的存储空间,从而减小存储容量和占用尽量小的网络带宽。 JPEG标准:用于灰度或彩色图像的压缩标准。适用于不太复杂或一般取自真实景象的图像压缩。压缩比率可达20:1或25:1。无损模式通常采用2:1压缩 JPEG2000:高压缩率、无损压缩、渐进传输、兴趣区域压缩、色彩模式、图像处理简单。

10.3 静态图像的数据压缩 JPEG标准 国际标准化组织(ISO)和国际电报电话咨询委员会(CCITT)联合成立的“联合图像专家组”JPEG(Joint Photograph coding Experts Group)于1991年提出的“多灰度静止图像的数字压缩编码”(简称JPEG标准)。 这是一个适应于彩色和单色多灰度或连续色调静止数字图像的压缩标准,是最常用的图像文件格式,是一种有损压缩,压缩比很大。

10.3 静态图像的数据压缩 JPEG-2000标准 随着多媒体应用领域的快速增长,传统JPEG压缩技术已无法满足人们对数字化多媒体图像资料的要求。针对这些问题,专家们开始了下一代JPEG 2000标准的制定,最终标准于2000年12月出台。 JPEG 2000的特点: 高压缩率 有损/无损压缩 渐进传输 感兴趣区域压缩 色彩模式 图像处理简单

JPEG与JPEG 2000的性能比较 标准 JPEG JPEG 2000 主要编码技术 离散余弦变换(DCT) 知觉量化 Zigzag扫描 霍夫曼编码 算术编码 离散小波变化(DWT) EBCOT核心算法 ROI编码 空间可扩展编码 质量可扩展编码 面向对象编码 位图形状编码 容错编码、TCQ、零数扫描 压缩比 2~30 2~50 算法效率 30:1以上急剧下降 100:1以上急剧衰减 速率失真特性 比JPEG提高30% 应用场合 Internet 数字照相 图像视频编辑 Internet 数字照相 数字图书馆 电子商务 打印、扫描、传真、遥感

10.4 运动图像的数据压缩 视频:运动图像即静止图像的连续播放状态 运动图像的数据压缩方法 有损和无损压缩 帧内和帧间压缩 压缩目标:尽可能保证视觉效果的前提下减少视频数据率。 压缩比:压缩后的数据量与压缩前的数据量之比。 运动图像的数据压缩方法 有损和无损压缩 帧内和帧间压缩 对称和不对称压缩

10.4 运动图像的数据压缩 MPEG(运动图像专家组—Moving Pictures Experts Group)标准是一系列视频、音频、数据的压缩标准。分成MPEG视频、MPEG音频和MPEG系统三大部分。 MPEG算法除了对单幅图像进行编码外(帧内编码),还利用图像序列的相关特性去除帧间图像冗余,大大提高了视频图像的压缩比。 压缩比可达到200:1,同时图像和音频的质量也非常高。

10.4 运动图像的数据压缩 最初MPEG专家组的工作项目是3个,即在1.5Mbps,l0Mbps,40Mbps传输速率下对图像编码,分别命名为MPEG-1,MPEG-2,MPEG-3。l992年,MPEG-2适用范围扩大到HDTV,能支持MPEG-3的所有功能,因而MFEG-3被取消。 主要有: MPEG-1、 MPEG-2、 MPEG-4、 MPEG-7、 MPEG-21

10.4 运动图像的数据压缩 MPEG-1 标准 MPEG-1即“用于数字存储媒体运动图像及其伴音速率为1.5Mbps的压缩编码”,于1992年正式出版。 MPEG-1的任务主要是,将视频信号及其伴音以可接收的重建质量压缩到约1.5Mbps的码率,并复合成一个单一的MPEG位流,同时保证视频和音频的同步。 MPEG-1 是VCD视频的压缩标准。

10.4 运动图像的数据压缩 MPEG-1标准 分4个部分 ①MPEG系统:定义音频、视频及有关数据的同步; ④一致性测试。

10.4 运动图像的数据压缩 MPEG-2标准 MPEG-2标准于1994年公布,包括系统部分、视频部分、音频部分及符合性测试部分。 MPEG-2编码标准希望囊括数字电视、图象通信各领域的编码标准,MPEG-2按压缩比大小的不同分成五个档次(profile),每一个档次又按图象清晰度的不同分成四种图象格式,或称为级别(level)。五个档次四种级别共有20种组合,但实际应用中有些组合不太可能出现,较常用的是11种组合。 MPEG-2 是DVD视频的压缩标准。

10.4 运动图像的数据压缩 MPEG-4 标准 MPEG-4标准于1998年公布,是为了播放流式媒体的高质量视频而专门设计的,它可利用很窄的带度,采用了全新的压缩理念,通过帧重建技术,压缩和传输数据,以求使用最少的数据获得最佳的图像质量,并将之作为网络上传送之用。 MPEG-4 可把DVD内MPEG-2的视频文件转换为体积更小的文件。还包含了以前MPEG压缩标准所不具备的比特率的可伸缩性、动画精灵、交互性甚至版权保护等一些特殊功能。

10.4 运动图像的数据压缩 MPEG-7 标准 MPEG-7 是“多媒体内容描述接口”, (Multimedia Content Description Interface) 。准确说来, MPEG-7并不是一种压缩编码方法,继 MPEG-4之后,要解决的矛盾就是对日渐庞大的图像、声音信息的管理和迅速搜索。MPEG7就是针对这个矛盾的解决方案。 其目标就是产生一种描述多媒体信息的标准 , 并将该描述与所描述的内容相联系 , 以实现快速有效的检索。只有首先解决了多媒体信息的规范化描述后 , 才能更好地实现信息定位。该标准不包括对描述特征的自动提取。

10.4 运动图像的数据压缩 MPEG-7 标准可以独立于其他 MPEG 标准使用 , MPEG-7 的适用范围广泛 , 既可以应用于存储,也可以用于流式应用,它还可以在实时或非实时的环境下应用。MPEG-7的应用领域包括:  ◇ 数字图书馆(如图像目录、音乐词典等);  ◇ 多媒体目录服务(如黄页);广播媒体的选择(如无线电频道、TV频道等);  ◇ 多媒体编辑(如个人电子新闻服务,多媒体创作等)。  ◇ 潜在的应用领域包括:教育、娱乐、新闻、旅游、医疗、购物、地理信息系统等领域。

10.4 运动图像的数据压缩 MPEG-21 标准 MPEG-21 标准是多媒体框架和综合应用方面的框架。该标准致力于在大范围的网络上实现透明的传输和对多媒体资源的充分利用。 其目标就是将各种标准集成起来以协调各种技术,管理多媒体商务。

10.4 运动图像的数据压缩 RM/RMVB RM (Real Media)是RealNetworks公司所制定的音频视频压缩规范,是一种流媒体格式。 用户可以使用RealPlayer或RealOne Player对符合RealMedia技术规范的网络音频/视频资源进行实况转播,并且RealMedia还可以根据不同的网络传输速率制定出不同的压缩比率,从而实现在低速率的网络上进行影像数据实时传送和播放。这种格式的另一个特点是用户使用RealPlayer播放器可以在不下载音频/视频内容的条件下实现在线播放。

本章小结 多媒体数据压缩的必要性和可能性 多媒体数据压缩技术及其标准 多媒体数据压缩的技术指标 常用多媒体数据压缩标准