第 9 章 网络互连 路由器的构成 互联网与因特网 9.2 因特网的网际协议 IP 分类的 IP地址

Slides:



Advertisements
Similar presentations
网络管理员考证辅导 —— 真题解析 广东水利电力职业技术学院 计算机系 温海燕
Advertisements

NAT与ICMP交互.
寻址与路由技术 IP地址 ARP协议 IP地址的扩展 Internet的组播 Internet群组管理协议 自举与动态配置 端口与套接字
计算机网络 第 6 章 网络互连.
第 6 章 网络互连.
第六章 网络互连.
第 4 章 网络层 本章主要内容: 4.1 网络层提供的两种服务 4.2 网际协议 IP 虚拟互连网络
本周复习一下基本的网络知识 下周开始讲解路由器的配置方法 第四周开始到实验室做实验(主楼910,919)
第 8 章 IP 基礎與定址.
计算机网络课程总结 一、计算机网络基础 计算机网络定义和功能、基本组成 OSI/RM参考模型(各层的功能,相关概念, 模型中数据传输 等)
LSF系统介绍 张焕杰 中国科学技术大学网络信息中心
第 4 章 网络层 数学科学学院 冯世斌.
计算机网络 第4章 网络层.
第 4 章 网络层.
计算机网络 第 6 章 网络互连.
计算机网络教程(第 2 版) 第 7 章 网络互连 课件制作人:谢希仁.
计算机网络(第 5 版) 第 4 章 网络层.
第四章 网络层 网络层 网络层 网络层 网络层 网络层.
计算机网络(第 5 版) 第 4 章 网络层.
因特网 TCP/IP协议 IP路由技术 Internet接入技术 Internet服务.
计算机网络(第 5 版) 第 4 章 网络层 课件制作人:谢希仁.
路由器的性能特点和工作原理 两种常用的内部网关协议(RIP和OSPF) 路由器的产品结构 局域网中使用路由器的方案
第 13讲 网络层(4) 1/51.
第 6 章 网络互连 基本内容 网络互连的概念,IP协议、IP地址、IP数据报的格式、子网划分及子网掩码的设置、IP地址和物理地址的关系,控制报文协议,路由选择协议:内部网关协议RIP、OSPF,外部网关协议BGP,网络互联设备。 重点掌握 IP协议、IP地址、 IP数据报的格式、子网划分及子网掩码的设置、IP地址和物理地址的关系,路由选择协议:内部网关协议RIP、OSPF,外部网关协议BGP。
网络互连问题,即多个网络通过路由器互连成一个互连网络的问题。
实验八 配置动态路由-OSPF协议.
路由器繞送協定- 第三章 路由器動態繞送服務
引言 路由器的主要工作就是为经过路由器的每个 IP数据报/分组 寻找一条最佳传输路径(寻径),并将该数据有效地传送到目的站点(转发)。
计算机网络技术 项目负责人 张嗣萍/本环节主讲教师 第5章 路由器与路由选择 (2)路由选择与数据转发 2007年度上海建桥学院教改课程
第3章 路由技术—动态路由.
第17章 实现路由器.
4.5 划分子网和构造超网 划分子网 1. 从两级 IP 地址到三级 IP 地址
项目四 组建跨地区网络 授课教师:肖颖.
计算机网络 吴功宜 编著 欢迎辞.
网络系统集成技术 网络互联技术 第六章.
第四章 网络层.
第6章 网络层.
在PHP和MYSQL中实现完美的中文显示
Data Communications and Computer Networks
教师:陈有为 TCP/IP与Internet(A) 教师:陈有为
LSF系统介绍 张焕杰 中国科学技术大学网络信息中心
Chapter 18 Internet Protocols
计算机网络原理 计算机与信息工程分院 周文峰.
IPv6 地址空间.
基礎網路管理 第五章 位址的分配 製作:林錦財.
计算机网络(第 5 版) 第 4 章 网络层 课件制作人:谢希仁.
第七章 路由器技术和路由选择协议 于银辉 教授 吉林大学 通信工程学院.
管理信息结构SMI.
矢量距离路由.
网络常用常用命令 课件制作人:谢希仁.
实用组网技术 第一章 网络基础知识.
Windows网络操作系统管理 ——Windows Server 2008 R2.
第十三章 TCP/IP 與 Internet 網路連結技術
第2讲 网络安全协议基础 此为封面页,需列出课程编码、课程名称和课程开发室名称。
C语言程序设计 主讲教师:陆幼利.
计算机网络(第 6 版) 第 4 章 网络层.
傳輸控制協議 /互聯網協議 TCP/IP.
宁波市高校慕课联盟课程 与 进行交互 Linux 系统管理.
4.2 网际协议IP 网际协议 IP 是 TCP/IP 体系中两个最主要的协议之一。与 IP 协议配套使用的还有四个协议:
数据报分片.
第4章 网络层.
第4课时 绝对值.
谢聪.
GIS基本功能 数据存储 与管理 数据采集 数据处理 与编辑 空间查询 空间查询 GIS能做什么? 与分析 叠加分析 缓冲区分析 网络分析
第九讲 网络层(一).
C++语言程序设计 C++语言程序设计 第一章 C++语言概述 第十一组 C++语言程序设计.
3.8 局域网应用实例 某省劳动和社会保障网络中心组网实例 会议中心的无线组网实例.
实验六静态路由.
外部网关协议.
第 4 章 网络层.
Presentation transcript:

第 9 章 网络互连 9.1.1 路由器的构成 9.1.2 互联网与因特网 9.2 因特网的网际协议 IP 9.2.1 分类的 IP地址 第 9 章 网络互连 9.1 路由器在网际互连中的作用 9.1.1 路由器的构成 9.1.2 互联网与因特网 9.2 因特网的网际协议 IP 9.2.1 分类的 IP地址 9.2.2 IP 地址与硬件地址 9.2.3 地址解析协议 ARP 和逆地址解析协议 RARP 9.2.4 IP 数据报的格式 9.2.5 IP 层处理数据报的流程

第 9 章 网络互连(续) 9.3 划分子网和构造超网 6.3.1 划分子网 6.3.2 使用子网掩码的分组转发过程 第 9 章 网络互连(续) 9.3 划分子网和构造超网 6.3.1 划分子网 6.3.2 使用子网掩码的分组转发过程 6.3.3 无分类编址 CIDR 9.4 因特网控制报文协议 ICMP 9.5 因特网的路由选择协议 9.5.1 有关路由选择协议的几个基本概念 9.5.2 内部网关协议 RIP 9.5.3 内部网关协议 OSPF 9.5.4 外部网关协议 BGP

9.1 路由器在 网际互连中的作用 9.1.1 路由器的构成 当主机 A 要向另一个主机 B 发送数据报时,先要检查目的主机 B 是否与源主机 A 连接在同一个网络上。 如果是,就将数据报直接交付给目的主机 B 而不需要通过路由器。 但如果目的主机与源主机 A 不是连接在同一个网络上,则应将数据报发送给本网络上的某个路由器,由该路由器按照转发表指出的路由将数据报转发给下一个路由器。这就叫作间接交付。

直接交付和间接交付 C A 直接交付 间接交付 间接交付 间接交付 直接交付 B 直接交付不需要使用路由器 但间接交付就必须使用路由器

典型的路由器的结构 路由选择处理机 3——网络层 2——数据链路层 1——物理层 路由 选择 分组 转发 交换结构 路由选择协议 路由表 输入端口 输出端口 1 2 3 3 2 1 分组处理 … … 转发表 分组 转发 输入端口 输出端口 1 2 3 交换结构 3 2 1

“转发”和“路由选择”的区别 “转发”(forwarding)就是路由器根据转发表将用户的 IP 数据报从合适的端口转发出去。 “路由选择”(routing)则是按照分布式算法,根据从各相邻路由器得到的关于网络拓扑的变化 情况,动态地改变所选择的路由。 路由表是根据路由选择算法得出的。而转发表是从路由表得出的。 在讨论路由选择的原理时,往往不去区分转发表和路由表的区别,

输入端口对线路上 收到的分组的处理 数据链路层剥去帧首部和尾部后,将分组送到网络层的队列中排队等待处理。这会产生一定的时延。 输入端口的处理 网络层处理 分组排队 从 线 路 接 收 分 组 交 换 结 构 数据链路层 处理 物理层处理 查表和转发

输出端口将交换结构传送来的分组发送到线路 当交换结构传送过来的分组先进行缓存。数据链路层处理模块将分组加上链路层的首部和尾部,交给物理层后发送到外部线路。 输出端口的处理 向 线 路 发 送 分 组 网络层处理 分组排队 交 换 结 构 数据链路层 处理 物理层处理 缓存管理

分组丢弃 若路由器处理分组的速率赶不上分组进入队列的速率,则队列的存储空间最终必定减少到零,这就使后面再进入队列的分组由于没有存储空间而只能被丢弃。 路由器中的输入或输出队列产生溢出是造成分组丢失的重要原因。

9.1.2 互联网与因特网 互连在一起的网络要进行通信,会遇到许多问题需要解决,如: 不同的寻址方案 不同的最大分组长度 不同的网络接入机制 9.1.2 互联网与因特网 互连在一起的网络要进行通信,会遇到许多问题需要解决,如: 不同的寻址方案 不同的最大分组长度 不同的网络接入机制 不同的超时控制 不同的差错恢复方法 不同的状态报告方法 不同的路由选择技术 不同的用户接入控制 不同的服务(面向连接服务和无连接服务) 不同的管理与控制方式

网络互相连接起来 要使用一些中间设备 中间设备又称为中间系统或中继(relay)系统。 物理层中继系统:转发器(repeater)。 数据链路层中继系统:网桥或桥接器(bridge)。 网络层中继系统:路由器(router)。 网桥和路由器的混合物:桥路器(brouter)。 网络层以上的中继系统:网关(gateway)。

网络互连使用路由器 当中继系统是转发器或网桥时,一般并不称之为网络互连,因为这仅仅是把一个网络扩大了,而这仍然是一个网络。 网关由于比较复杂,目前使用得较少。 互联网都是指用路由器进行互连的网络。 由于历史的原因,许多有关 TCP/IP 的文献将网络层使用的路由器称为网关。

互连网络与虚拟互连网络 路由器 网络 网络 虚拟互连网络 (IP 网) 网络 网络 网络 (a) 互连网络 (b) 虚拟互连网络

虚拟互连网络的意义 所谓虚拟互连网络也就是逻辑互连网络,它的意思就是互连起来的各种物理网络的异构性本来是客观存在的,但是我们利用 IP 协议就可以使这些性能各异的网络从用户看起来好像是一个统一的网络。 使用 IP 协议的虚拟互连网络可简称为 IP 网。 使用虚拟互连网络的好处是:当互联网上的主机进行通信时,就好像在一个网络上通信一样,而看不见互连的各具体的网络异构细节。

名词 internet 和 Internet 以小写字母 i 开始的 internet(互联网或互连网)是一个通用名词,它泛指由多个计算机网络互连而成的虚拟网络。 以大写字母 I 开始的的 Internet(因特网)则是一个专用名词,它指当前全球最大的、开放的、由众多网络相互连接而成的特定计算机网络,它采用 TCP/IP 协议族,且其前身是美国的 ARPANET。

9.2 因特网的网际协议 IP 网际协议 IP 是 TCP/IP 体系中两个最主要的协议之一 。与 IP 协议配套使用的还有四个协议: 地址解析协议 ARP (Address Resolution Protocol) 逆地址解析协议 RARP (Reverse Address Resolution Protocol) 因特网控制报文协议 ICMP (Internet Control Message Protocol) 因特网组管理协议 IGMP (Internet Group Management Protocol)

网际协议 IP 及其配套协议 各种应用层协议 应用层 (TELNET, FTP, SMTP 等) 运输层 TCP, UDP ICMP IGMP 网际层 IP RARP ARP 与各种网络接口 网络接口层 物理硬件

9.2.1 分类的 IP 地址 1. IP 地址及其表示方法 我们把整个因特网看成为一个单一的、抽象的网络。IP 地址就是给每个连接在因特网上的主机(或路由器)分配一个在全世界范围是唯一的 32 bit 的标识符。 IP 地址现在由因特网名字与号码指派公司ICANN (Internet Corporation for Assigned Names and Numbers)进行分配

IP 地址的编址方法 分类的 IP 地址。这是最基本的编址方法,在 1981 年就通过了相应的标准协议。 子网的划分。这是对最基本的编址方法的改进,其标准[RFC 950]在 1985 年通过。 构成超网。这是比较新的无分类编址方法。1993 年提出后很快就得到推广应用。

分类 IP 地址 每一类地址都由两个固定长度的字段组成,其中一个字段是网络号 net-id,它标志主机(或路由器)所连接到的网络,而另一个字段则是主机号 host-id,它标志该主机(或路由器)。 两级的 IP 地址可以记为: IP 地址 ::= { <网络号>, <主机号>} (6-1) ::= 代表“定义为”

IP 地址中的网络号字段和主机号字段 A 类地址 net-id 8 bit host-id 24 bit B 类地址 1 net-id net-id 8 bit host-id 24 bit B 类地址 1 net-id 16 bit host-id 16 bit C 类地址 1 1 net-id 24 bit host-id 8 bit D 类地址 1 1 1 0 多 播 地 址 E 类地址 1 1 1 1 保 留 为 今 后 使 用

IP 地址中的网络号字段和主机号字段 A 类地址的网络号字段 net-id 为 1 字节 A 类地址 net-id 8 bit net-id 8 bit host-id 24 bit B 类地址 1 net-id 16 bit host-id 16 bit C 类地址 1 1 net-id 24 bit host-id 8 bit A 类地址的网络号字段 net-id 为 1 字节 D 类地址 1 1 1 0 多 播 地 址 E 类地址 1 1 1 1 保 留 为 今 后 使 用

IP 地址中的网络号字段和主机号字段 B 类地址的网络号字段 net-id 为 2 字节 A 类地址 net-id 8 bit net-id 8 bit host-id 24 bit B 类地址 1 net-id 16 bit host-id 16 bit C 类地址 1 1 net-id 24 bit host-id 8 bit B 类地址的网络号字段 net-id 为 2 字节 D 类地址 1 1 1 0 多 播 地 址 E 类地址 1 1 1 1 保 留 为 今 后 使 用

IP 地址中的网络号字段和主机号字段 C 类地址的网络号字段 net-id 为 3 字节 A 类地址 net-id 8 bit net-id 8 bit host-id 24 bit B 类地址 1 net-id 16 bit host-id 16 bit C 类地址 1 1 net-id 24 bit host-id 8 bit C 类地址的网络号字段 net-id 为 3 字节 D 类地址 1 1 1 0 多 播 地 址 E 类地址 1 1 1 1 保 留 为 今 后 使 用

IP 地址中的网络号字段和主机号字段 A 类地址的主机号字段 host-id 为 3 字节 A 类地址 net-id 8 bit net-id 8 bit host-id 24 bit B 类地址 1 net-id 16 bit host-id 16 bit C 类地址 1 1 net-id 24 bit host-id 8 bit A 类地址的主机号字段 host-id 为 3 字节 D 类地址 1 1 1 0 多 播 地 址 E 类地址 1 1 1 1 保 留 为 今 后 使 用

IP 地址中的网络号字段和主机号字段 B 类地址的主机号字段 host-id 为 2 字节 A 类地址 net-id 8 bit net-id 8 bit host-id 24 bit B 类地址 1 net-id 16 bit host-id 16 bit C 类地址 1 1 net-id 24 bit host-id 8 bit B 类地址的主机号字段 host-id 为 2 字节 D 类地址 1 1 1 0 多 播 地 址 E 类地址 1 1 1 1 保 留 为 今 后 使 用

IP 地址中的网络号字段和主机号字段 C 类地址的主机号字段 host-id 为 1 字节 A 类地址 net-id 8 bit net-id 8 bit host-id 24 bit B 类地址 1 net-id 16 bit host-id 16 bit C 类地址 1 1 net-id 24 bit host-id 8 bit C 类地址的主机号字段 host-id 为 1 字节 D 类地址 1 1 1 0 多 播 地 址 E 类地址 1 1 1 1 保 留 为 今 后 使 用

IP 地址中的网络号字段和主机号字段 D 类地址是多播地址 A 类地址 net-id 8 bit host-id 24 bit B 类地址 net-id 8 bit host-id 24 bit B 类地址 1 net-id 16 bit D 类地址是多播地址 host-id 16 bit C 类地址 1 1 net-id 24 bit host-id 8 bit D 类地址 1 1 1 0 多 播 地 址 E 类地址 1 1 1 1 保 留 为 今 后 使 用

IP 地址中的网络号字段和主机号字段 E 类地址保留为今后使用 A 类地址 net-id 8 bit host-id 24 bit net-id 8 bit host-id 24 bit B 类地址 1 net-id 16 bit E 类地址保留为今后使用 host-id 16 bit C 类地址 1 1 net-id 24 bit host-id 8 bit D 类地址 1 1 1 0 多 播 地 址 E 类地址 1 1 1 1 保 留 为 今 后 使 用

IP地址划分方法

路由器转发分组的步骤 先按所要找的 IP 地址中的网络号 net-id 把目的网络找到。 当分组到达目的网络后,再利用主机号host-id 将数据报直接交付给目的主机。 按照整数字节划分 net-id 字段和 host-id 字段,就可以使路由器在收到一个分组时能够更快地将地址中的网络号提取出来。

点分十进制记法 10000000000010110000001100011111 机器中存放的 IP 地址 是 32 bit 二进制代码 10000000 00001011 00000011 00011111 每隔 8 bit 插入一个空格 能够提高可读性 将每 8 bit 的二进制数 转换为十进制数 128 11 3 31 采用点分十进制记法 则进一步提高可读性 128.11.3.31

2. 常用的三种类别的 IP 地址 IP 地址的使用范围 网络 最大 第一个 最后一个 每个网络 类别 网络数 可用的 可用的 中最大的 网络 最大 第一个 最后一个 每个网络 类别 网络数 可用的 可用的 中最大的 网络号 网络号 主机数 A 126 (27 – 2) 1 126 16,777,214 B 16,384 (214) 128.0 191.255 65,534 C 2,097,152 (221) 192.0.0 223.255.255 254

IP 地址的一些重要特点 (1) IP 地址是一种分等级的地址结构。分两个等级的好处是: 第一,IP 地址管理机构在分配 IP 地址时只分配网络号,而剩下的主机号则由得到该网络号的单位自行分配。这样就方便了 IP 地址的管理。 第二,路由器仅根据目的主机所连接的网络号来转发分组(而不考虑目的主机号),这样就可以使路由表中的项目数大幅度减少,从而减小了路由表所占的存储空间。

IP 地址的一些重要特点 (2) 实际上 IP 地址是标志一个主机(或路由器)和一条链路的接口。 当一个主机同时连接到两个网络上时,该主机就必须同时具有两个相应的 IP 地址,其网络号 net-id 必须是不同的。这种主机称为多接口主机(multihomed host)。 由于一个路由器至少应当连接到两个网络(这样它才能将 IP 数据报从一个网络转发到另一个网络),因此一个路由器至少应当有两个不同的 IP 地址。

IP 地址的一些重要特点 (3) 用转发器或网桥连接起来的若干个局域网仍为一个网络,因此这些局域网都具有同样的网络号 net-id。

图中的网络号就是 IP 地址中的 net-id 在同一个局域网上的主机或路由器的 IP 地址中的网络号必须是一样的。 图中的网络号就是 IP 地址中的 net-id 222.1.1.1 222.1.1.2 222.1.1.3 LAN1 222.1.1. 222.1.1.4 R1 LAN3 222.1.5.1 222.1.6.1 222.1.3.3 222.1.3. 222.1.2.1 N3 222.1.6. LAN2 222.1.2. N2 222.1.5. 222.1.5.2 222.1.6.2 222.1.3.1 R3 N1 222.1.4. R2 222.1.2.5 222.1.2.2 222.1.3.2 222.1.4.2 222.1.4.1 B 222.1.2.4 222.1.2.3 互联网

图中的网络号就是 IP 地址中的 net-id 在同一个局域网上的主机或路由器的 IP 地址中的网络号必须是一样的。 图中的网络号就是 IP 地址中的 net-id 222.1.1.1 222.1.1.2 222.1.1.3 LAN1 222.1.1. 222.1.1.4 R1 LAN3 222.1.5.1 222.1.6.1 222.1.3.3 222.1.3. 222.1.2.1 N3 222.1.6. LAN2 222.1.2. N2 222.1.5. 222.1.5.2 222.1.6.2 222.1.3.1 R3 N1 222.1.4. R2 222.1.2.5 222.1.2.2 222.1.3.2 222.1.4.2 222.1.4.1 B 222.1.2.4 222.1.2.3 互联网

图中的网络号就是 IP 地址中的 net-id 222.1.1.1 222.1.1.2 222.1.1.3 LAN1 222.1.1. 222.1.1.4 R1 LAN3 222.1.5.1 在同一个局域网上的主机或路由器的 IP 地址中的网络号必须是一样的。 图中的网络号就是 IP 地址中的 net-id 222.1.6.1 222.1.3.3 222.1.3. 222.1.2.1 N3 222.1.6. LAN2 222.1.2. N2 222.1.5. 222.1.5.2 222.1.6.2 222.1.3.1 R3 N1 222.1.4. R2 222.1.2.5 222.1.2.2 222.1.3.2 222.1.4.2 222.1.4.1 B 222.1.2.4 222.1.2.3 互联网

图中的网络号就是 IP 地址中的 net-id 在同一个局域网上的主机或路由器的 IP 地址中的网络号必须是一样的。 图中的网络号就是 IP 地址中的 net-id 222.1.1.1 222.1.1.2 222.1.1.3 LAN1 222.1.1. 222.1.1.4 R1 LAN3 222.1.5.1 222.1.6.1 222.1.3.3 222.1.3. 222.1.2.1 N3 222.1.6. LAN2 222.1.2. N2 222.1.5. 222.1.5.2 222.1.6.2 222.1.3.1 R3 N1 222.1.4. R2 222.1.2.5 222.1.2.2 222.1.3.2 222.1.4.2 222.1.4.1 B 222.1.2.4 222.1.2.3 互联网

路由器总是具有两个或两个以上的 IP 地址。 路由器的每一个接口都有一个 不同网络号的 IP 地址。 222.1.1.1 222.1.1.2 222.1.1.3 LAN1 222.1.1. 222.1.1.4 R1 LAN3 222.1.5.1 222.1.6.1 222.1.3.3 222.1.3. 222.1.2.1 N3 222.1.6. LAN2 222.1.2. N2 222.1.5. 222.1.5.2 222.1.6.2 222.1.3.1 R3 N1 222.1.4. R2 222.1.2.5 222.1.2.2 222.1.3.2 222.1.4.2 222.1.4.1 B 222.1.2.4 222.1.2.3 互联网

路由器总是具有两个或两个以上的 IP 地址。 路由器的每一个接口都有一个 不同网络号的 IP 地址。 222.1.1.1 222.1.1.2 222.1.1.3 LAN1 222.1.1. 222.1.1.4 R1 LAN3 222.1.5.1 222.1.6.1 222.1.3.3 222.1.3. 222.1.2.1 N3 222.1.6. LAN2 222.1.2. N2 222.1.5. 222.1.5.2 222.1.6.2 222.1.3.1 R3 N1 222.1.4. R2 222.1.2.5 222.1.2.2 222.1.3.2 222.1.4.2 222.1.4.1 B 222.1.2.4 222.1.2.3 互联网

路由器总是具有两个或两个以上的 IP 地址。 路由器的每一个接口都有一个 不同网络号的 IP 地址。 222.1.1.1 222.1.1.2 222.1.1.3 LAN1 222.1.1. 222.1.1.4 R1 LAN3 222.1.5.1 222.1.6.1 222.1.3.3 222.1.3. 222.1.2.1 N3 222.1.6. LAN2 222.1.2. N2 222.1.5. 222.1.5.2 222.1.6.2 222.1.3.1 R3 N1 222.1.4. R2 222.1.2.5 222.1.2.2 222.1.3.2 222.1.4.2 222.1.4.1 B 222.1.2.4 222.1.2.3 互联网

互联网中的 IP 地址 两个路由器直接相连的接口处,可指明也可不指明 IP 地址。如指明 IP 地址,则这一段连线就构成了一种只包含一段线路的特殊“网络” 。现在常不指明 IP 地址。 222.1.1.1 222.1.1.2 222.1.1.3 LAN1 222.1.1. 222.1.1.4 R1 LAN3 222.1.5.1 222.1.6.1 222.1.3.3 222.1.3. 222.1.2.1 N3 222.1.6. LAN2 222.1.2. N2 222.1.5. 222.1.5.2 222.1.6.2 222.1.3.1 R3 N1 222.1.4. R2 222.1.2.5 222.1.2.2 222.1.3.2 222.1.4.2 222.1.4.1 B 222.1.2.4 222.1.2.3 互联网

9.2.2 IP 地址与硬件地址 首部 应用层数据 网络层及以上 使用 IP 地址 IP 地址 TCP 报文 首部 链路层及以下 使用硬件地址 硬件地址 IP 数据报 首部 尾部 MAC 帧

查找路由表 查找路由表 通信的路径 H1→经过 R1 转发→再经过 R2 转发→H2 主机 H1 主机 H2 IP1 硬件地址 IP2 HA1 HA3 HA4 HA5 HA6 HA2 局域网 局域网 局域网 通信的路径 H1→经过 R1 转发→再经过 R2 转发→H2

从协议栈的层次上看数据的流动 IP 层上的互联网 主机 H1 主机 H2 IP1 硬件地址 IP2 路由器 R1 路由器 R2 HA1 局域网 局域网 局域网 主机 H1 主机 H2 IP 数据报 路由器 R1 路由器 R2 IP1 → IP2 IP1 → IP2 IP1 → IP2 IP1 IP2 IP3 IP4 IP5 IP6 IP 层上的互联网 HA1 HA3 HA4 HA5 HA6 HA2 从 HA1 到 HA3 从 HA4 到 HA5 从 HA6 到 HA2 MAC 帧 MAC 帧 MAC 帧

从虚拟的 IP 层上看 IP 数据报的流动 IP 层上的互联网 主机 H1 主机 H2 IP1 硬件地址 IP2 路由器 R1 路由器 R2 HA1 HA3 HA4 HA5 HA6 HA2 局域网 局域网 局域网 主机 H1 主机 H2 IP 数据报 路由器 R1 路由器 R2 IP1 → IP2 IP1 → IP2 IP1 → IP2 IP1 IP2 IP3 IP4 IP5 IP6 IP 层上的互联网 HA1 HA3 HA4 HA5 HA6 HA2 从 HA1 到 HA3 从 HA4 到 HA5 从 HA6 到 HA2 MAC 帧 MAC 帧 MAC 帧

在链路上看 MAC 帧的流动 IP 层上的互联网 主机 H1 主机 H2 IP1 硬件地址 IP2 路由器 R1 路由器 R2 HA1 局域网 局域网 局域网 主机 H1 主机 H2 IP 数据报 路由器 R1 路由器 R2 IP1 → IP2 IP1 → IP2 IP1 → IP2 IP1 IP2 IP3 IP4 IP5 IP6 IP 层上的互联网 HA1 HA3 HA4 HA5 HA6 HA2 从 HA1 到 HA3 从 HA4 到 HA5 从 HA6 到 HA2 MAC 帧 MAC 帧 MAC 帧

在 IP 层抽象的互联网上只能看到 IP 数据报 图中的 IP1→IP2 表示从源地址 IP1 到目的地址 IP2 主机 H1 主机 H2 IP 数据报 路由器 R1 路由器 R2 IP1 → IP2 IP1 IP2 IP3 IP4 IP5 IP6 IP 层上的互联网 HA1 HA3 HA4 HA5 HA6 HA2 从 HA1 到 HA3 从 HA4 到 HA5 从 HA6 到 HA2 MAC 帧 MAC 帧 MAC 帧

路由器只根据目的站的 IP 地址的网络号进行路由选择 主机 H1 主机 H2 IP 数据报 路由器 R1 路由器 R2 IP1 → IP2 IP1 → IP2 IP1 → IP2 IP1 IP2 IP3 IP4 IP5 IP6 IP 层上的互联网 HA1 HA3 HA4 HA5 HA6 HA2 从 HA1 到 HA3 从 HA4 到 HA5 从 HA6 到 HA2 MAC 帧 MAC 帧 MAC 帧

在具体的物理网络的链路层 只能看见 MAC 帧而看不见 IP 数据报 IP 层上的互联网 主机 H1 主机 H2 IP 数据报 路由器 R1 HA1 HA3 HA4 HA5 HA6 HA2 MAC 帧 从 HA1 到 HA3 从 HA4 到 HA5 从 HA6 到 HA2

IP层抽象的互联网屏蔽了下层很复杂的细节 在抽象的网络层上讨论问题,就能够使用 统一的、抽象的 IP 地址 研究主机和主机或主机和路由器之间的通信 主机 H1 主机 H2 IP 数据报 路由器 R1 路由器 R2 IP1 → IP2 IP1 → IP2 IP1 → IP2 IP1 IP2 IP3 IP4 IP5 IP6 IP 层上的互联网 HA1 HA3 HA4 HA5 HA6 HA2 MAC 帧 从 HA1 到 HA3 从 HA4 到 HA5 从 HA6 到 HA2

9.2.3 地址解析协议 ARP 和 逆地址解析协议 RARP 不管网络层使用的是什么协议,在实际网络的链路上传送数据帧时,最终还是必须使用硬件地址。 每一个主机都设有一个 ARP 高速缓存(ARP cache),里面有所在的局域网上的各主机和路由器的 IP 地址到硬件地址的映射表。 当主机 A 欲向本局域网上的某个主机 B 发送 IP 数据报时,就先在其 ARP 高速缓存中查看有无主机 B 的 IP 地址。如有,就可查出其对应的硬件地址,再将此硬件地址写入 MAC 帧,然后通过局域网将该 MAC 帧发往此硬件地址。

主机 A 广播发送 ARP 请求分组 主机 B 向 A 发送 ARP 响应分组 我是 209.0.0.5,硬件地址是 00-00-C0-15-AD-18 我想知道主机 209.0.0.6 的硬件地址 ARP 请求 ARP 请求 ARP 请求 ARP 请求 209.0.0.6 209.0.0.5 X Y Z A B 00-00-C0-15-AD-18 主机 B 向 A 发送 ARP 响应分组 我是 209.0.0.6 硬件地址是 08-00-2B-00-EE-0A ARP 响应 209.0.0.6 209.0.0.5 X Y Z A B 00-00-C0-15-AD-18 08-00-2B-00-EE-0A

ARP 高速缓存的作用 为了减少网络上的通信量,主机 A 在发送其 ARP 请求分组时,就将自己的 IP 地址到硬件地址的映射写入 ARP 请求分组。 当主机 B 收到 A 的 ARP 请求分组时,就将主机 A 的这一地址映射写入主机 B 自己的 ARP 高速缓存中。这对主机 B 以后向 A 发送数据报时就更方便了。

应当注意的问题 ARP 是解决同一个局域网上的主机或路由器的 IP 地址和硬件地址的映射问题。

应当注意的问题 从IP地址到硬件地址的解析是自动进行的,主机的用户对这种地址解析过程是不知道的。 只要主机或路由器要和本网络上的另一个已知 IP 地址的主机或路由器进行通信,ARP 协议就会自动地将该 IP 地址解析为链路层所需要的硬件地址。

为什么我们不直接 使用硬件地址进行通信? 由于全世界存在着各式各样的网络,它们使用不同的硬件地址。要使这些异构网络能够互相通信就必须进行非常复杂的硬件地址转换工作,因此几乎是不可能的事。 连接到因特网的主机都拥有统一的 IP 地址,它们之间的通信就像连接在同一个网络上那样简单方便,因为调用 ARP 来寻找某个路由器或主机的硬件地址都是由计算机软件自动进行的,对用户来说是看不见这种调用过程的。

逆地址解析协议 RARP 逆地址解析协议 RARP 使只知道自己硬件地址的主机能够知道其 IP 地址。

9.2.4 IP 数据报的格式 一个 IP 数据报由首部和数据两部分组成。 在首部的固定部分的后面是一些可选字段,其长度是可变的。

比特 1 2 3 4 5 6 7 优 先 级 D T R C 未用 比特 4 8 16 19 24 31 首 部 版 本 首部长度 服 务 类 型 总 长 度 固 定 部 分 标 识 标志 片 偏 移 生 存 时 间 协 议 首 部 检 验 和 源 地 址 目 的 地 址 可变 部分 可 选 字 段 (长 度 可 变) 填 充 数 据 部 分 传送 首 部 数 据 部 分 IP 数据报

比特 1 2 3 4 5 6 7 优 先 级 D T R C 未用 比特 4 8 16 19 24 31 固 定 部 分 版 本 首部长度 服 务 类 型 总 长 度 标 识 标志 片 偏 移 首 部 生 存 时 间 协 议 首 部 检 验 和 源 地 址 目 的 地 址 可变 部分 可 选 字 段 (长 度 可 变) 填 充 数 据 部 分 传送 首 部 数 据 部 分 IP 数据报

比特 1 2 3 4 5 6 7 优 先 级 D T R C 未用 比特 4 8 16 19 24 31 版 本 首部长度 服 务 类 型 总 长 度 固 定 部 分 标 识 标志 片 偏 移 首 部 生 存 时 间 协 议 首 部 检 验 和 源 地 址 目 的 地 址 可变 部分 可 选 字 段 (长 度 可 变) 填 充 数 据 部 分 传送 首 部 数 据 部 分 IP 数据报

版本——占 4 bit,指IP协议的版本 目前的 IP 协议版本号为 4 (即 IPv4) 比特 1 2 3 4 5 6 7 优 先 级 D 1 2 3 4 5 6 7 优 先 级 D T R C 未用 比特 4 8 16 19 24 31 版本——占 4 bit,指IP协议的版本 目前的 IP 协议版本号为 4 (即 IPv4) 版 本 首部长度 服 务 类 型 总 长 度 固 定 部 分 标 识 标志 片 偏 移 首 部 生 存 时 间 协 议 首 部 检 验 和 源 地 址 目 的 地 址 可变 部分 可 选 字 段 (长 度 可 变) 填 充 数 据 部 分

首部长度——占 4 bit,可表示的最大数值 是 15 个单位(一个单位为 4 字节) 因此 IP 的首部长度的最大值是60字节。 比特 1 1 2 3 4 5 6 7 优 先 级 D T R C 未用 比特 4 8 16 19 24 31 版 本 首部长度——占 4 bit,可表示的最大数值 是 15 个单位(一个单位为 4 字节) 因此 IP 的首部长度的最大值是60字节。 首部长度 服 务 类 型 总 长 度 固 定 部 分 标 识 标志 片 偏 移 首 部 生 存 时 间 协 议 首 部 检 验 和 源 地 址 目 的 地 址 可变 部分 可 选 字 段 (长 度 可 变) 填 充 数 据 部 分

服务类型——占 8 bit,用来获得更好的服务 比特 1 2 3 4 5 6 7 优 先 级 D T R C 未用 比特 4 8 16 19 24 31 版 本 服务类型——占 8 bit,用来获得更好的服务 这个字段以前一直没有被人们使用 首部长度 服 务 类 型 总 长 度 固 定 部 分 标 识 标志 片 偏 移 首 部 生 存 时 间 协 议 首 部 检 验 和 源 地 址 目 的 地 址 可变 部分 可 选 字 段 (长 度 可 变) 填 充 数 据 部 分

总长度——占 16 bit,指首部和数据之和的长度, 单位为字节,因此数据报的最大长度为 65535 字节。 比特 1 2 3 4 5 6 7 优 先 级 D T R C 未用 比特 4 8 16 19 24 31 总长度——占 16 bit,指首部和数据之和的长度, 单位为字节,因此数据报的最大长度为 65535 字节。 总长度必须不超过最大传送单元 MTU。 版 本 首部长度 服 务 类 型 总 长 度 固 定 部 分 标 识 标志 片 偏 移 首 部 生 存 时 间 协 议 首 部 检 验 和 源 地 址 目 的 地 址 可变 部分 可 选 字 段 (长 度 可 变) 填 充 数 据 部 分

标识(identification) 占 16 bit, 它是一个计数器,用来产生数据报的标识,使得分片后 比特 1 2 3 4 5 6 7 优 先 级 D T R C 未用 比特 4 8 16 19 24 31 版 本 首部长度 服 务 类 型 总 长 度 标识(identification) 占 16 bit, 它是一个计数器,用来产生数据报的标识,使得分片后 的数据报可以正确重装为原来的数据报。 固 定 部 分 标 识 标志 片 偏 移 首 部 生 存 时 间 协 议 首 部 检 验 和 源 地 址 目 的 地 址 可变 部分 可 选 字 段 (长 度 可 变) 填 充 数 据 部 分

标志(flag) 占 3 bit,目前只使用前两个比特。 最低位为MF,MF=1表示后面“还有分片”的数据报, 1 2 3 4 5 6 7 优 先 级 D T R C 未用 比特 4 8 16 19 24 31 版 本 首部长度 服 务 类 型 总 长 度 标志(flag) 占 3 bit,目前只使用前两个比特。 最低位为MF,MF=1表示后面“还有分片”的数据报, MF=0表示这是分片的数据报片中的最后一个。 中间位为DF,“不能分片”,DF=0才允许分片。 固 定 部 分 标 识 标志 片 偏 移 首 部 生 存 时 间 协 议 首 部 检 验 和 源 地 址 目 的 地 址 可变 部分 可 选 字 段 (长 度 可 变) 填 充 数 据 部 分

片偏移(12 bit)指出:较长的分组在分片后 比特 1 2 3 4 5 6 7 优 先 级 D T R C 未用 比特 4 8 16 19 24 31 版 本 首部长度 服 务 类 型 总 长 度 固 定 部 分 片偏移(12 bit)指出:较长的分组在分片后 某片在原分组中的相对位置。 片偏移以 8 个字节为偏移单位。 标 识 标志 片 偏 移 首 部 生 存 时 间 协 议 首 部 检 验 和 源 地 址 目 的 地 址 可变 部分 可 选 字 段 (长 度 可 变) 填 充 数 据 部 分

IP 数据报分片的举例 数据部分共 3800 字节 需分片的 数据报 偏移 = 0/8 = 0 首部 字节 0 1400 2800 3799 首部 1 首部 2 首部 3 字节 0 1399 1400 2799 2800 3799 数据报片 1 数据报片 2 数据报片 3 偏移 = 0/8 = 0 偏移 = 1400/8 = 175 偏移 = 2800/8 = 350

生存时间(8 bit)记为 TTL (Time To Live) 数据报在网络中可通过的路由器数的最大值。 比特 1 2 3 4 5 6 7 优 先 级 D T R C 未用 比特 4 8 16 19 24 31 版 本 首部长度 服 务 类 型 总 长 度 固 定 部 分 标 识 标志 片 偏 移 首 部 生 存 时 间 协 议 首 部 检 验 和 源 地 址 目 的 地 址 可变 部分 可 选 字 段 (长 度 可 变) 填 充 数 据 部 分 生存时间(8 bit)记为 TTL (Time To Live) 数据报在网络中可通过的路由器数的最大值。

协议(8 bit)字段指出此数据报携带的数据使用何种协议 以便目的主机的 IP 层将数据部分上交给哪个处理过程 比特 1 2 3 4 5 6 7 优 先 级 D T R C 未用 比特 4 8 16 19 24 31 版 本 首部长度 服 务 类 型 总 长 度 固 定 部 分 标 识 标志 片 偏 移 首 部 协议(8 bit)字段指出此数据报携带的数据使用何种协议 以便目的主机的 IP 层将数据部分上交给哪个处理过程 生 存 时 间 协 议 首 部 检 验 和 源 地 址 目 的 地 址 可变 部分 可 选 字 段 (长 度 可 变) 填 充 数 据 部 分

运输层 TCP UDP ICMP IGMP OSPF 网络层 首部 数 据 部 分 协议字段指出应将数据 部分交给哪一个进程 IP 数据报

首部检验和(16 bit)字段只检验数据报的首部 不包括数据部分。 这里不采用 CRC 检验码而采用简单的计算方法。 比特 1 2 3 4 5 6 7 优 先 级 D T R C 未用 比特 4 8 16 19 24 31 版 本 首部长度 服 务 类 型 总 长 度 固 定 部 分 标 识 标志 片 偏 移 首 部 首部检验和(16 bit)字段只检验数据报的首部 不包括数据部分。 这里不采用 CRC 检验码而采用简单的计算方法。 生 存 时 间 协 议 首 部 检 验 和 源 地 址 目 的 地 址 可变 部分 可 选 字 段 (长 度 可 变) 填 充 数 据 部 分

源地址和目的地址都各占 4 字节 比特 1 2 3 4 5 6 7 优 先 级 D T R C 未用 比特 4 8 16 19 24 31 1 2 3 4 5 6 7 优 先 级 D T R C 未用 比特 4 8 16 19 24 31 版 本 首部长度 服 务 类 型 总 长 度 固 定 部 分 标 识 标志 片 偏 移 首 部 生 存 时 间 协 议 首 部 检 验 和 源地址和目的地址都各占 4 字节 源 地 址 目 的 地 址 可变 部分 可 选 字 段 (长 度 可 变) 填 充 数 据 部 分

2. IP 数据报首部的可变部分 IP 首部的可变部分就是一个选项字段,用来支持排错、测量以及安全等措施,内容很丰富。 选项字段的长度可变,从 1 个字节到 40 个字节不等,取决于所选择的项目。 增加首部的可变部分是为了增加 IP 数据报的功能,但这同时也使得 IP 数据报的首部长度成为可变的。这就增加了每一个路由器处理数据报的开销。 实际上这些选项很少被使用。

9.2.5 IP 层转发分组的流程 路由器: 路由器是用来连接不同的网络。 路由器是专门用来转发分组的。 路由器使用统一的 IP 协议。 路由器根据目的网络地址找出下一个路由器。

在路由表中,对每一条路由,最主要的是 (目的网络地址,下一跳地址) 路由器 R2 的路由表 10.0.0.4 20.0.0.7 20.0.0.9 30.0.0.2 30.0.0.1 40.0.0.4 R1 R2 R3 网 1 10.0.0.0 网 2 20.0.0.0 网 3 30.0.0.0 网 4 40.0.0.0 1 路由器 R2 的路由表 目的主机所在的网络 下一跳路由器的地址 20.0.0.0 直接交付,接口 0 30.0.0.0 直接交付,接口 1 10.0.0.0 20.0.0.7 40.0.0.0 30.0.0.1 10.0.0.4 20.0.0.7 20.0.0.9 30.0.0.2 30.0.0.1 40.0.0.4 R1 R2 R3 链路 1 链路 2 链路 3 链路 4

特定主机路由 这种路由是为特定的目的主机指明一个路由。 采用特定主机路由可使网络管理人员能更方便地控制网络和测试网络,同时也可在需要考虑某种安全问题时采用这种特定主机路由。

分组转发算法 (1) 从数据报的首部提取目的站的 IP 地址 D, 得出目的网络地址为 N。 (2) 若网络 N 与此路由器直接相连,则直接将数据报交付给目的站 D;否则是间接交付,执行(3)。 (3) 若路由表中有目的地址为 D 的特定主机路由,则将数据报传送给路由表中所指明的下一跳路由器;否则,执行(4)。 (4) 若路由表中有到达网络 N 的路由,则将数据报传送给路由表指明的下一跳路由器;否则,执行(5)。 (5) 若路由表中有一个默认路由,则将数据报传送给路由表中所指明的默认路由器;否则,执行(6)。 (6) 报告转发分组出错。

必须强调指出 IP 数据报的首部中没有地方可以用来指明“下一跳路由器的 IP 地址”。 网络接口软件使用 ARP 负责将下一跳路由器的 IP 地址转换成硬件地址,并将此硬件地址放在链路层的 MAC 帧的首部,然后根据这个硬件地址找到下一跳路由器。

9.3 划分子网和构造超网 9.3.1 划分子网 1. 从两级 IP 地址到三级 IP 地址 9.3 划分子网和构造超网 9.3.1 划分子网 1. 从两级 IP 地址到三级 IP 地址 在 ARPANET 的早期,IP 地址的设计确实不够合理。 IP 地址空间的利用率有时很低。 给每一个物理网络分配一个网络号会使路由表变得太大因而使网络性能变坏。 两级的 IP 地址不够灵活。

三级的 IP 地址 从 1985 年起在 IP 地址中又增加了一个“子网号字段”,使两级的 IP 地址变成为三级的 IP 地址。 这种做法叫作划分子网(subnetting) 。划分子网已成为因特网的正式标准协议。

划分子网的基本思路 划分子网纯属一个单位内部的事情。单位对外仍然表现为没有划分子网的网络。 从主机号借用若干个比特作为子网号 subnet-id,而 主机号 host-id 也就相应减少了若干个比特。 IP地址 ::= {<网络号>, <子网号>, <主机号>} (6-2)

划分子网的基本思路(续) 凡是从其他网络发送给本单位某个主机的 IP 数据报,仍然是根据 IP 数据报的目的网络号 net-id,先找到连接在本单位网络上的路由器。 然后此路由器在收到 IP 数据报后,再按目的网络号 net-id 和子网号 subnet-id 找到目的子网。 最后就将 IP 数据报直接交付给目的主机。

一个未划分子网的 B 类网络145.13.0.0 网络 145.13.0.0 … … … 我的网络地址 是 145.13.0.0 145.13.3.101 145.13.3.11 … 145.13.7.34 R2 145.13.3.10 145.13.7.35 网络 145.13.0.0 R1 … R3 145.13.7.56 … 所有到网络 145.13.0.0的分组均到达此路由器 145.13.21.23 145.13.21.8 145.13.21.9

划分为三个子网后对外仍是一个网络 网络 145.13.0.0 所有到达网络 145.13.0.0 的分组均到达 此路由器 145.13.3.101 145.13.3.11 145.13.7.34 145.13.3.10 … 145.13.7.35 R2 子网 145.13.3.0 子网 145.13.7.0 … 145.13.7.56 R1 R3 子网 145.13.21.0 … 145.13.21.23 网络 145.13.0.0 145.13.21.9 145.13.21.8

划分子网后变成了三级结构 当没有划分子网时,IP 地址是两级结构,地址的网络号字段也就是 IP 地址的“因特网部分”,而主机号字段是 IP 地址的“本地部分”。 划分子网后 IP 地址就变成了三级结构。划分子网只是将 IP 地址的本地部分进行再划分,而不改变 IP 地址的因特网部分。

2. 子网掩码 从一个 I P数据报的首部并无法判断源主机或目的主机所连接的网络是否进行了子网的划分。 2. 子网掩码 从一个 I P数据报的首部并无法判断源主机或目的主机所连接的网络是否进行了子网的划分。 使用子网掩码(subnet mask)可以找出 IP 地址中的子网部分。

IP 地址的各字段和子网掩码 因特网部分 本地部分 两级 IP 地址 网络号 net-id 主机号 host-id 因特网部分 本地部分 subnet-id 子网号 host-id 网络号 主机号 子网掩码 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 划分子网时 的网络地址 net-id subnet-id host-id 为全 0

(IP 地址) AND (子网掩码) = 网络地址 因特网部分 本地部分 两级 IP 地址 网络号 net-id 主机号 host-id 因特网部分 本地部分 三级 IP 地址 net-id host-id subnet-id AND 网络号 子网号 主机号 子网掩码 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 划分子网时 的网络地址 net-id subnet-id host-id 为全 0

A 类、B 类和 C 类 IP 地址的默认子网掩码 A 类 地 址 网络地址 net-id host-id 为全 0 默认子网掩码 255.0.0.0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B 类 地 址 网络地址 net-id host-id 为全 0 默认子网掩码 255.255.0.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C 类 地 址 网络地址 net-id host-id 为全 0 默认子网掩码 255.255.255.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

9.3.2 使用子网掩码的分组转发过程 在不划分子网的两级 IP 地址下,从 IP 地址得出网络地址是个很简单的事。 9.3.2 使用子网掩码的分组转发过程 在不划分子网的两级 IP 地址下,从 IP 地址得出网络地址是个很简单的事。 但在划分子网的情况下,从IP地址却不能唯一地得出网络地址来,这是因为网络地址取决于那个网络所采用的子网掩码,但数据报的首部并没有提供子网掩码的信息。 因此分组转发的算法也必须做相应的改动。

划分子网后分组的转发举例 R1 的路由表(未给出默认路由器) 子网2:网络地址 128.30.33.128 128.30.33.13 目的网络地址 子网掩码 下一跳 128.30.33.0 128.30.33.128 128.30.36.0 255.255.255.128 255.255.255.0 接口 0 接口 1 R2 子网1: 网络地址 128.30.33.0 子网掩码 255.255.255.128 H1 128.30.33.1 子网2:网络地址 128.30.33.128 子网掩码 255.255.255.128 128.30.33.130 1 128.30.33.129 H2 128.30.33.138 R2 1 128.30.36.2 子网3:网络地址 128.30.36.0 子网掩码 255.255.255.0 H3 128.30.36.12

主机 H1 要发送分组给 H2 因此 H1 首先检查主机 128.30.33.138 是否连接在本网络上 要发送的分组的目的 IP 地址:128.30.33.138 R1 的路由表(未给出默认路由器) 128.30.33.13 目的网络地址 子网掩码 下一跳 128.30.33.0 128.30.33.128 128.30.36.0 255.255.255.128 255.255.255.0 接口 0 接口 1 R2 子网1: 网络地址 128.30.33.0 子网掩码 255.255.255.128 H1 128.30.33.1 R1 子网2:网络地址 128.30.33.128 子网掩码 255.255.255.128 128.30.33.130 1 128.30.33.129 128.30.33.138 R2 H2 请注意:H1 并不知道 H2 连接在哪一个网络上。 H1 仅仅知道 H2 的 IP 地址是 128.30.33.138 因此 H1 首先检查主机 128.30.33.138 是否连接在本网络上 如果是,则直接交付; 否则,就送交路由器 R1,并逐项查找路由表。 1 128.30.36.2 子网3:网络地址 128.30.36.0 子网掩码 255.255.255.0 H3 128.30.36.12

主机 H1 首先将 本子网的子网掩码 255. 255. 255. 128 与分组的 IP 地址 128. 30. 33 主机 H1 首先将 本子网的子网掩码 255.255.255.128 与分组的 IP 地址 128.30.33.138 逐比特相“与”(AND 操作) R1 的路由表(未给出默认路由器) 255.255.255.128 AND 128.30.33.138 的计算 128.30.33.13 H1 目的网络地址 子网掩码 下一跳 128.30.33.0 128.30.33.128 128.30.36.0 255.255.255.128 255.255.255.0 接口 0 接口 1 R2 子网1: 网络地址 128.30.33.0 子网掩码 255.255.255.128 255 就是二进制的全 1,因此 255 AND xyz = xyz, 这里只需计算最后的 128 AND 138 即可。 128.30.33.1 R1 子网2:网络地址 128.30.33.128 子网掩码 255.255.255.128 128 → 10000000 138 → 10001010 128.30.33.130 1 128.30.33.129 H2 逐比特 AND 操作后:10000000 → 128 128.30.33.138 R2 1 128.30.36.2 255.255.255.128 128. 30. 33.138 128. 30. 33.128 逐比特 AND 操作 子网3:网络地址 128.30.36.0 子网掩码 255.255.255.0  H1 的网络地址 H3 128.30.36.12

因此 H1 必须把分组传送到路由器 R1 然后逐项查找路由表 128.30.33.13 目的网络地址 子网掩码 下一跳 128.30.33.0 128.30.33.128 128.30.36.0 255.255.255.128 255.255.255.0 接口 0 接口 1 R2 子网1: 网络地址 128.30.33.0 子网掩码 255.255.255.128 H1 128.30.33.1 R1 子网2:网络地址 128.30.33.128 子网掩码 255.255.255.128 128.30.33.130 1 128.30.33.129 H2 128.30.33.138 R2 1 128.30.36.2 子网3:网络地址 128.30.36.0 子网掩码 255.255.255.0 H3 128.30.36.12

路由器 R1 收到分组后就用路由表中第 1 个项目的 子网掩码和 128.30.33.138 逐比特 AND 操作 R1 收到的分组的目的 IP 地址:128.30.33.138 R1 的路由表(未给出默认路由器) 128.30.33.13 目的网络地址 子网掩码 下一跳 128.30.33.0 128.30.33.128 128.30.36.0 255.255.255.128 255.255.255.0 接口 0 接口 1 R2 子网1: 网络地址 128.30.33.0 子网掩码 255.255.255.128 H1 128.30.33.1 R1 子网2:网络地址 128.30.33.128 子网掩码 255.255.255.128 不一致 128.30.33.130 1 128.30.33.129 R2 H2 128.30.33.138 255.255.255.128 AND 128.30.33.138 = 128.30.33.128 不匹配! (因为128.30.33.128 与路由表中的 128.30.33.0 不一致) 1 128.30.36.2 子网3:网络地址 128.30.36.0 子网掩码 255.255.255.0 H3 128.30.36.12

路由器 R1 再用路由表中第 2 个项目的 子网掩码和 128.30.33.138 逐比特 AND 操作 R1 收到的分组的目的 IP 地址:128.30.33.138 R1 的路由表(未给出默认路由器) 128.30.33.13 目的网络地址 子网掩码 下一跳 128.30.33.0 128.30.33.128 128.30.36.0 255.255.255.128 255.255.255.0 接口 0 接口 1 R2 子网1: 网络地址 128.30.33.0 子网掩码 255.255.255.128 H1 一致! 128.30.33.1 R1 子网2:网络地址 128.30.33.128 子网掩码 255.255.255.128 128.30.33.130 1 128.30.33.129 128.30.33.138 R2 H2 255.255.255.128 AND 128.30.33.138 = 128.30.33.128 匹配! 这表明子网 2 就是收到的分组所要寻找的目的网络 1 128.30.36.2 子网3:网络地址 128.30.36.0 子网掩码 255.255.255.0 H3 128.30.36.12

在划分子网的情况下路由器转发分组的算法 (1) 从收到的分组的首部提取目的 IP 地址 D。 相应的网络地址匹配。若匹配,则将分组直接交付。 否则就是间接交付,执行(3)。 (3) 若路由表中有目的地址为 D 的特定主机路由,则将 分组传送给指明的下一跳路由器;否则,执行(4)。 (4) 对路由表中的每一行的子网掩码和 D 逐比特相“与”, 若其结果与该行的目的网络地址匹配,则将分组传送 给该行指明的下一跳路由器;否则,执行(5)。 (5) 若路由表中有一个默认路由,则将分组传送给路由表 中所指明的默认路由器;否则,执行(6)。 (6) 报告转发分组出错。

9.3.3 无分类编址 CIDR 1. 网络前缀 划分子网在一定程度上缓解了因特网在发展中遇 到的困难。然而在 1992 年因特网仍然面临三个必 须尽早解决的问题,这就是: B 类地址在 1992 年已分配了近一半,眼看就要在 1994 年 3 月全部分配完毕! 因特网主干网上的路由表中的项目数急剧增长(从几千个增长到几万个)。 整个 IPv4 的地址空间最终将全部耗尽。

IP 编址问题的演进 1987 年,RFC 1009 就指明了在一个划分子网的网络中可同时使用几个不同的子网掩码。使用变长子网掩码 VLSM (Variable Length Subnet Mask)可进一步提高 IP 地址资源的利用率。 在 VLSM 的基础上又进一步研究出无分类编址方法,它的正式名字是无分类域间路由选择 CIDR (Classless Inter-Domain Routing)。

CIDR 最主要的特点 CIDR 消除了传统的 A 类、B 类和 C 类地址以及划分子网的概念,因而可以更加有效地分配 IPv4 的地址空间。 CIDR使用各种长度的“网络前缀”(network-prefix)来代替分类地址中的网络号和子网号。 IP 地址从三级编址(使用子网掩码)又回到了两级编址。

无分类的两级编址 无分类的两级编址的记法是: IP地址 ::= {<网络前缀>, <主机号>} (6-3) CIDR 还使用“斜线记法”(slash notation),它又称为CIDR记法,即在IP地址后面加上一个斜线“/”,然后写上网络前缀所占的比特数(这个数值对应于三级编址中子网掩码中比特 1 的个数)。 CIDR 将网络前缀都相同的连续的 IP 地址组成“CIDR地址块”。

CIDR 地址块 128.14.32.0/20 表示的地址块共有 212 个地址(因为斜线后面的 20 是网络前缀的比特数,所以主机号的比特数是 12)。 这个地址块的起始地址是 128.14.32.0。 在不需要指出地址块的起始地址时,也可将这样的地址块简称为“/20 地址块”。 128.14.32.0/20 地址块的最小地址:128.14.32.0 128.14.32.0/20 地址块的最大地址:128.14.47.255 全 0 和全 1 的主机号地址一般不使用。

128.14.32.0/20 表示的地址(212 个地址) 最小地址 10000000 00001110 00100000 00000000 10000000 00001110 00100000 00000001 10000000 00001110 00100000 00000010 10000000 00001110 00100000 00000011 10000000 00001110 00100000 00000100 10000000 00001110 00100000 00000101 10000000 00001110 00111111 11111011 10000000 00001110 00111111 11111100 10000000 00001110 00111111 11111101 10000000 00001110 00111111 11111110 10000000 00001110 00111111 11111111 所有地址 的 20 bit 前缀都是 一样的   最大地址

路由聚合(route aggregation) 一个 CIDR 地址块可以表示很多地址,这种地址的聚合常称为路由聚合,它使得路由表中的一个项目可以表示很多个(例如上千个)原来传统分类地址的路由。 路由聚合也称为构成超网(supernetting)。 CIDR 虽然不使用子网了,但仍然使用“掩码”这一名词(但不叫子网掩码)。 对于 /20 地址块,它的掩码是 20 个连续的 1。 斜线记法中的数字就是掩码中1的个数。

CIDR 记法的其他形式 10.0.0.0/10 可简写为 10/10,也就是将点分十进制中低位连续的 0 省略。 10.0.0.0/10 隐含地指出 IP 地址 10.0.0.0 的掩码是 255.192.0.0。此掩码可表示为 11111111 11000000 00000000 00000000 掩码中有 10 个连续的 1 255 192

CIDR 记法的其他形式 10.0.0.0/10 可简写为 10/10,也就是将点分十进制中低位连续的 0 省略。 10.0.0.0/10 相当于指出 IP 地址 10.0.0.0 的掩码是 255.192.0.0,即 11111111 11000000 00000000 00000000 网络前缀的后面加一个星号 * 的表示方法 如 00001010 00*,在星号 * 之前是网络前缀,而星号 * 表示 IP 地址中的主机号

构成超网 前缀长度不超过 23 bit 的 CIDR 地址块都包含了多个 C 类地址。 这些 C 类地址合起来就构成了超网。 网络前缀越短,其地址块所包含的地址数就越多。而在三级结构的IP地址中,划分子网是使网络前缀变长。

CIDR 地址块划分举例 ISP 大学 X 因特网 三系 四系 二系 一系 206.0.64.0/18 206.0.68.0/22 206.0.68.0/23 206.0.70.0/24 206.0.71.0/25 206.0.71.128/25 206.0.68.0/25 206.0.68.128/25 206.0.69.0/25 206.0.69.128/25 206.0.70.0/26 206.0.70.64/26 206.0.70.128/26 206.0.70.192/26 206.0.71.0/26 206.0.71.64/26 206.0.71.128/26 206.0.71.192/26 三系 四系 二系 一系 单位 地址块 二进制表示 地址数 ISP 206.0.64.0/18 11001110.00000000.01* 16384 大学 206.0.68.0/22 11001110.00000000.010001* 1024 一系 206.0.68.0/23 11001110.00000000.0100010* 512 二系 206.0.70.0/24 11001110.00000000.01000110.* 256 三系 206.0.71.0/25 11001110.00000000.01000111.0* 128 四系 206.0.71.128/25 11001110.00000000.01000111.1* 128

CIDR 地址块划分举例 ISP 大学 X 206.0.64.0/18 因特网 206.0.68.0/22 206.0.68.0/23 206.0.70.0/24 206.0.71.0/25 206.0.71.128/25 206.0.68.0/25 206.0.68.128/25 206.0.69.0/25 206.0.69.128/25 206.0.70.0/26 206.0.70.64/26 206.0.70.128/26 206.0.70.192/26 206.0.71.0/26 206.0.71.64/26 206.0.71.128/26 206.0.71.192/26 三系 四系 二系 一系 这个 ISP 共有 64 个 C 类网络。如果不采用 CIDR 技术,则在与该 ISP 的路由器交换路由信息的每一个路由器的路由表中,就需要有 64 个项目。但采用地址聚合后,只需用路由聚合后的 1 个项目 206.0.64.0/18 就能找到该 ISP。

2. 最长前缀匹配 使用 CIDR 时,路由表中的每个项目由“网络前缀”和“下一跳地址”组成。在查找路由表时可能会得到不止一个匹配结果。 应当从匹配结果中选择具有最长网络前缀的路由:最长前缀匹配(longest-prefix matching)。 网络前缀越长,其地址块就越小,因而路由就越具体。 最长前缀匹配又称为最长匹配或最佳匹配。

最长前缀匹配举例 收到的分组的目的地址 D = 206.0.71.130 路由表中的项目:206.0.68.0/22 (ISP) 206.0.71.128/25 (四系) 查找路由表中的第 1 个项目 第 1 个项目 206.0.68.0/22 的掩码 M 有 22 个连续的 1。 M = 11111111 11111111 11111100 00000000 因此只需把 D 的第 3 个字节转换成二进制。 M = 11111111 11111111 11111100 00000000 AND D = 206. 0. 01000111 10000010 206. 0. 01000100. 0 与 206.0.68.0/22 匹配 68

最长前缀匹配举例 收到的分组的目的地址 D = 206.0.71.130 路由表中的项目:206.0.68.0/22 (ISP) 206.0.71.128/25 (四系) 再查找路由表中的第 2 个项目 第 2 个项目 206.0.71.128/25 的掩码 M 有 25 个连续的 1。 M = 11111111 11111111 11111111 10000000 因此只需把 D 的第 4 个字节转换成二进制。 M = 11111111 11111111 11111111 10000000 AND D = 206. 0. 01000111.10000010 206. 0. 71. 10000000 与 206.0.71.128/25 匹配

最长前缀匹配 D AND (11111111 11111111 11111100 00000000) = 206.0.68.0/22 匹配 D AND (11111111 11111111 11111111 10000000) = 206.0.71.128/25 匹配 选择两个匹配的地址中更具体的一个,即选择最长前缀的地址。

9.4 因特网控制报文协议 ICMP 为了提高 IP 数据报交付成功的机会,在网际层使用了因特网控制报文协议 ICMP (Internet Control Message Protocol)。 ICMP 允许主机或路由器报告差错情况和提供有关异常情况的报告。 ICMP 是 IP 层的协议。 ICMP 报文作为 IP 层数据报的数据,加上数据报的首部,组成 IP 数据报发送出去。

ICMP 报文的格式 8 16 31 前 4 个字节 都是一样的 类型 代码 检验和 (这 4 个字节取决于 ICMP 报文的类型) 8 16 31 前 4 个字节 都是一样的 类型 代码 检验和 (这 4 个字节取决于 ICMP 报文的类型) ICMP 的数据部分(长度取决于类型) ICMP 报文 首 部 数 据 部 分 IP 数据报

ICMP 报文 ICMP 报文有两种: ICMP 差错报告报文和 ICMP 询问报文。

ICMP 差错报告报文共有 5 种 终点不可达 源站抑制 时间超过 参数问题 改变路由(重定向)

如何产生ICMP 差错报告报文的数据字段 IP 数据报的数据字段 收到的 IP 数据报 IP 数据报 首部 8 字节 ICMP 的 前 8 字节 IP 数据报 首部 8 字节 ICMP 差错报告报文 首部 ICMP 差错报告报文 装入 ICMP 报文的 IP 数据报 IP 数据报

不发送 ICMP 差错报告报文 的几种情况 对 ICMP 差错报告报文不再发送 对第一个分片的数据报片的所有后续数据报片都不发送 对具有多播地址的数据报都不发送 对具有特殊地址(如127.0.0.0或0.0.0.0)的数据报不发送

ICMP 询问报文有四种 回送请求和回答报文 时间戳请求和回答报文 掩码地址请求和回答报文 路由器询问和通告报文

PING (Packet InterNet Groper) PING 使用了 ICMP 回送请求与回送回答报文。 PING 是应用层直接使用网络层 ICMP 的例子,它没有通过运输层的 TCP 或UDP。

9.5 因特网的路由选择协议 9.5.1 有关路由选择协议的几个基本概念 9.5 因特网的路由选择协议 9.5.1 有关路由选择协议的几个基本概念 1. 理想的路由算法 算法必须是正确的和完整的。 算法在计算上应简单。 算法应能适应通信量和网络拓扑的变化,这就是说,要有自适应性。 算法应具有稳定性。 算法应是公平的。 算法应是最佳的。

代价 在研究路由选择时,需要给每一条链路指明一定的代价。 这里“代价”并不是指“钱”,而是由一个或几个因素综合决定的一种度量(metric),如链路长度、数据率、链路容量、是否要保密、传播时延等,甚至还可以是一天中某一个小时内的通信量、结点的缓存被占用的程度、链路差错率等。

最佳路由 不存在一种绝对的最佳路由算法。 所谓“最佳”只能是相对于某一种特定要求下得出的较为合理的选择而已。 实际的路由选择算法,应尽可能接近于理想的算法。 路由选择是个非常复杂的问题 它是网络中的所有结点共同协调工作的结果。 路由选择的环境往往是不断变化的,而这种变化有时无法事先知道。

从路由算法 的自适应性考虑 静态路由选择策略——即非自适应路由选择,其特点是简单和开销较小,但不能及时适应网络状态的变化。 动态路由选择策略——即自适应路由选择,其特点是能较好地适应网络状态的变化,但实现起来较为复杂,开销也比较大。

2. 分层次的路由选择协议 因特网采用分层次的路由选择协议。 原因: 因特网的规模非常大。 2. 分层次的路由选择协议 因特网采用分层次的路由选择协议。 原因: 因特网的规模非常大。 许多单位不愿意外界了解自己单位网络的布局细节和本部门所采用的路由选择协议(这属于本部门内部的事情),但同时还希望连接到因特网上。

自治系统(autonomous system) 因特网将整个互联网划分为许多较小的自治系统 AS。 一个自治系统是一个互联网,其最重要的特点就是自治系统有权自主地决定在本系统内应采用何种路由选择协议。 一个自治系统内的所有网络都属于一个行政单位(例如,一个公司,一所大学,政府的一个部门,等等)来管辖。 一个自治系统的所有路由器在本自治系统内都必须是连通的。

因特网有两大类路由选择协议 内部网关协议 IGP (Interior Gateway Protocol) 即在一个自治系统内部使用的路由选择协议。目前这类路由选择协议使用得最多。 如 RIP 和 OSPF 协议。 外部网关协议EGP (External Gateway Protocol) 需要使用一种协议将路由选择信息从一个自治系统传递到另一个自治系统中。 在外部网关协议中目前使用最多的是 BGP-4。

自治系统和 内部网关协议、外部网关协议 自治系统 A 自治系统 B 自治系统 C R3 IGP EGP R2 IGP IGP IGP IGP H1 IGP H2 IGP IGP IGP IGP 内部网关协议 IGP (例如,RIP) 外部网关协议 EGP (例如,BGP-4) 内部网关协议 IGP (例如,OSPF)

这里要指出两点 因特网的早期 RFC 文档中未使用“路由器”而是使用“网关”这一名词。但是在新的 RFC 文档中又使用了“路由器”这一名词。应当把这两个属于当作同义词。 IGP 和 EGP 是协议类别的名称。但 RFC 在使用 EGP 这个名词时出现了一点混乱,因为最早的一个外部网关协议的协议名字正好也是 EGP。因此在遇到名词 EGP 时,应弄清它是指旧的协议 EGP 还是指外部网关协议 EGP 这个类别。

9.5.2 内部网关协议 RIP (Routing Information Protocol) 1. 工作原理 路由信息协议 RIP 是内部网关协议 IGP中最先得到广泛使用的协议。 RIP 是一种分布式的基于距离向量的路由选择协议。 RIP 协议要求网络中的每一个路由器都要维护从它自己到其他每一个目的网络的距离记录。

“距离”的定义 从一路由器到直接连接的网络的距离定义为 1。 从一个路由器到非直接连接的网络的距离定义为所经过的路由器数加 1。 RIP 协议中的“距离”也称为“跳数”(hop count),因为每经过一个路由器,跳数就加 1。

“距离”的定义 RIP 认为一个好的路由就是它通过的路由器的数目少,即“距离短”。 RIP 允许一条路径最多只能包含 15 个路由器。

RIP 协议的三个要点 仅和相邻路由器交换信息。 交换的信息是当前本路由器所知道的全部信息,即自己的路由表。 按固定的时间间隔交换路由信息,例如,每隔 30 秒。

路由表的建立 路由器在刚刚开始工作时,只知道到直接连接的网络的距离(此距离定义为1)。 以后,每一个路由器也只和数目非常有限的相邻路由器交换并更新路由信息。 经过若干次更新后,所有的路由器最终都会知道到达本自治系统中任何一个网络的最短距离和下一跳路由器的地址。 RIP 协议的收敛(convergence)过程较快,即在自治系统中所有的结点都得到正确的路由选择信息的过程。

2. 距离向量算法 收到相邻路由器(其地址为 X)的一个 RIP 报文: (1) 先修改此 RIP 报文中的所有项目:将“下一跳”字段中的地址都改为 X,并将所有的“距离”字段的值加 1。 (2) 对修改后的 RIP 报文中的每一个项目,重复以下步骤: 若项目中的目的网络不在路由表中,则将该项目加到路由表中。 否则 若下一跳字段给出的路由器地址是同样的,则将收到的项 目 替换原路由表中的项目。 若收到项目中的距离小于路由表中的距离,则进行更新, 否则,什么也不做。 (3) 若 3 分钟还没有收到相邻路由器的更新路由表,则将此相邻路 由器记为不可达的路由器,即将距离置为16(距离为16表 示不可达)。 (4) 返回。

路由器之间交换信息 RIP协议让互联网中的所有路由器都和自己的相邻路由器不断交换路由信息,并不断更新其路由表,使得从每一个路由器到每一个目的网络的路由都是最短的(即跳数最少)。 虽然所有的路由器最终都拥有了整个自治系统的全局路由信息,但由于每一个路由器的位置不同,它们的路由表当然也应当是不同的。

举例:一开始,各路由表只有到相邻路由器的信息 1 1  5 1  E 网 1 1 1  2 1  3 1  网 5 5 1  6 1  2 1  5 1  D 网 2 A 4 1  6 1  F 网 6 B 网 3 网 4 C 3 1  4 1  “”表示“直接交付” “4”表示“从本路由器到网 4” “1”表示“距离是 1”

路由器 B 收到相邻路由器 A 和 C 的路由表 A 说:“我到网 1 的距离是 1。” 因此 B 现在也可以到网 1, 1 1  5 1  E 1 1  2 1  3 1  网 1 1 1  2 1  3 1  网 5 5 1  6 1  2 1  5 1  D 网 2 A 4 1  6 1  4 1  6 1  F 网 6 B 网 3 网 4 C 3 1  4 1  更新后 A 说:“我到网 1 的距离是 1。” 因此 B 现在也可以到网 1, 距离是 2,经过 A。” 1 2 A 2 2 A 3 1  4 1  6 2 C

路由器 B 收到相邻路由器 A 和 C 的路由表 A 说:“我到网 2 的距离是 1。” 因此 B 现在也可以到网 2, 1 1  5 1  E 网 1 1 1  2 1  3 1  网 5 5 1  6 1  2 1  5 1  D 网 2 A 4 1  6 1  F 网 6 B 网 3 1 1  2 1  3 1  网 4 4 1  6 1  C 3 1  4 1  更新后 A 说:“我到网 2 的距离是 1。” 因此 B 现在也可以到网 2, 距离是 2,经过 A。” 1 2 A 2 2 A 3 1  4 1  6 2 C

路由器 B 收到相邻路由器 A 和 C 的路由表 A 说:“我到网 3 的距离是 1。” 但 B 没有必要绕道经过路由器 A 1 1  5 1  E 网 1 1 1  2 1  3 1  网 5 5 1  6 1  2 1  5 1  D 网 2 A 4 1  6 1  F 网 6 B 网 3 1 1  2 1  3 1  网 4 3 1  4 1  4 1  6 1  C 更新后 A 说:“我到网 3 的距离是 1。” 但 B 没有必要绕道经过路由器 A 再到达网 3,因此这一项目不变。 1 2 A 2 2 A 3 1  4 1  6 2 C

路由器 B 收到相邻路由器 A 和 C 的路由表 C 说:“我到网 4 的距离是 1。” 但 B 没有必要绕道经过路由器 C 1 1  5 1  E 网 1 1 1  2 1  3 1  网 5 5 1  6 1  2 1  5 1  D 网 2 A 4 1  6 1  F 网 6 B 网 3 1 1  2 1  3 1  网 4 3 1  4 1  4 1  6 1  C 更新后 C 说:“我到网 4 的距离是 1。” 但 B 没有必要绕道经过路由器 C 再到达网 4,因此这一项目不变。 1 2 A 2 2 A 3 1  4 1  6 2 C

路由器 B 收到相邻路由器 A 和 C 的路由表 C 说:“我到网 6 的距离是 1。” 因此 B 现在也可以到网 6, 1 1  5 1  E 网 1 1 1  2 1  3 1  网 5 5 1  6 1  2 1  5 1  D 网 2 A 4 1  6 1  F 网 6 B 网 3 1 1  2 1  3 1  网 4 3 1  4 1  4 1  6 1  C 更新后 C 说:“我到网 6 的距离是 1。” 因此 B 现在也可以到网 6, 距离是 2,经过 C。” 1 2 A 2 2 A 3 1  4 1  6 2 C

最终所有的路由器的路由表都更新了 1 1  2 1  3 1  4 2 B 5 2 E 6 3 B 1 1  2 2 A 3 2 A 1 1  2 1  3 1  4 2 B 5 2 E 6 3 B 1 1  2 2 A 3 2 A 4 3 A 5 1  6 2 F 1 2 E 2 2 D 3 3 C 4 2 C 5 1  6 1  E 网 1 网 5 1 2 A 2 1  3 2 A 4 3 A 5 1  6 2 F 网 2 D A F C 网 6 1 2 A 2 2 A 3 1  4 1  5 3 C 6 2 C 1 3 B 2 3 B 3 2 B 4 1  5 2 F 6 1  网 3 B 网 4

RIP 协议的位置 RIP 协议使用运输层的用户数据报 UDP进行传送(使用 UDP 的端口 520)。 因此 RIP 协议的位置应当在应用层。但转发 IP 数据报的过程是在网络层完成的。

3. RIP2 协议的报文格式 4 字节 地址族标识符 路由标记 4 字节 网络地址 命令 版本 子网掩码 必为 0 下一跳路由器地址 距离 (1-16) 首部 路由部分 路由信息 (20 字节/路由) 可重复出现 最多 25 个 RIP 报文 IP 首部 UDP 首部 UDP 用户数据报 IP 数据报

RIP 协议的优缺点 RIP 存在的一个问题是当网络出现故障时,要经过比较长的时间才能将此信息传送到所有的路由器。 路由器之间交换的路由信息是路由器中的完整路由表,因而随着网络规模的扩大,开销也就增加。

9.5.3 内部网关协议 OSPF (Open Shortest Path First) “最短路径优先”是因为使用了 Dijkstra 提出的最短路径算法SPF OSPF 只是一个协议的名字,它并不表示其他的路由选择协议不是“最短路径优先”。 是分布式的链路状态协议。

三个要点 向本自治系统中所有路由器发送信息,这里使用的方法是洪泛法。 发送的信息就是与本路由器相邻的所有路由器的链路状态,但这只是路由器所知道的部分信息。 “链路状态”就是说明本路由器都和哪些路由器相邻,以及该链路的“度量”(metric)。 只有当链路状态发生变化时,路由器才用洪泛法向所有路由器发送此信息。

链路状态数据库 (link-state database) 由于各路由器之间频繁地交换链路状态信息,因此所有的路由器最终都能建立一个链路状态数据库。 这个数据库实际上就是全网的拓扑结构图,它在全网范围内是一致的(这称为链路状态数据库的同步)。 OSPF 的链路状态数据库能较快地进行更新,使各个路由器能及时更新其路由表。OSPF 的更新过程收敛得快是其重要优点。

OSPF 的区域(area) 为了使 OSPF 能够用于规模很大的网络,OSPF 将一个自治系统再划分为若干个更小的范围,叫作区域。 每一个区域都有一个 32 bit 的区域标识符(用点分十进制表示)。 区域也不能太大,在一个区域内的路由器最好不超过 200 个。

OSPF 划分为两种不同的区域 至其他自治系统 自治系统 AS 主干区域 0.0.0.0 区域 0.0.0.1 区域 0.0.0.3 R1 R6 网 6 R3 R7 网 1 R5 R9 网 7 网 2 R4 R2 网 3 网 8 R8 网 4 网 5 区域 0.0.0.1 区域 0.0.0.3 区域 0.0.0.2

划分区域 划分区域的好处就是将利用洪泛法交换链路状态信息的范围局限于每一个区域。 在一个区域内部的路由器只知道本区域的完整网络拓扑,而不知道其他区域的网络拓扑的情况。 OSPF 使用层次结构的区域划分。在上层的区域叫作主干区域(backbone area)。主干区域的标识符规定为0.0.0.0。主干区域的作用是用来连通其他在下层的区域。

主干路由器 至其他自治系统 自治系统 AS 主干区域 0.0.0.0 区域 0.0.0.1 区域 0.0.0.3 区域 0.0.0.2 R1 网 6 R3 R7 网 1 R5 R9 网 7 网 2 R4 R2 网 3 网 8 R8 网 4 网 5 区域 0.0.0.1 区域 0.0.0.3 区域 0.0.0.2

区域边界路由器 至其他自治系统 自治系统 AS 主干区域 0.0.0.0 区域 0.0.0.1 区域 0.0.0.3 区域 0.0.0.2 R1 R6 网 6 R3 R7 网 1 R5 R9 网 7 网 2 R4 R2 网 3 网 8 R8 网 4 网 5 区域 0.0.0.1 区域 0.0.0.3 区域 0.0.0.2

OSPF 直接用 IP 数据报传送 OSPF 不用 UDP 而是直接用 IP 数据报传送,可见 OSPF 的位置在网络层。 数据报很短的另一好处是可以不必将长的数据报分片传送。分片传送的数据报只要丢失一个,就无法组装成原来的数据报,而整个数据报就必须重传。

OSPF 的其他特点 OSPF 对不同的链路可根据 IP 分组的不同服务类型 TOS 而设置成不同的代价。因此,OSPF 对于不同类型的业务可计算出不同的路由。 如果到同一个目的网络有多条相同代价的路径,那么可以将通信量分配给这几条路径。这叫作多路径间的负载平衡。 所有在 OSPF 路由器之间交换的分组都具有鉴别的功能。 支持可变长度的子网划分和无分类编址 CIDR。 每一个链路状态都带上一个 32 bit 的序号,序号越大状态就越新。

OSPF 分组 比特 8 16 31 版 本 类 型 分 组 长 度 路 由 器 标 识 符 区 域 标 识 符 检 验 和 鉴 别 类 型 8 16 31 版 本 类 型 分 组 长 度 路 由 器 标 识 符 区 域 标 识 符 检 验 和 鉴 别 类 型 鉴 别 鉴 别 24 字节 OSPF 分组首部 类型 1 至类型 5 的 OSPF 分组 IP数据报首部 OSPF 分组 IP 数据报

OSPF 的其他特点 OSPF 还规定每隔一段时间,如 30 分钟,要刷新一次数据库中的链路状态。 由于一个路由器的链路状态只涉及到与相邻路由器的连通状态,因而与整个互联网的规模并无直接关系。因此当互联网规模很大时,OSPF 协议要比距离向量协议 RIP 好得多。 OSPF 没有“坏消息传播得慢”的问题,据统计,其响应网络变化的时间小于 100 ms。

网络中的每个路由器都维护一个有向图的数据库,该数据库是通过从互联网的其他路由器上得到的链路状态信息拼凑而成的。 路由器使用Dijkstra算法对有向图进行分析,计算到所有目的网络的最小费用路径。

Dijkstra算法的基本思路是: D(v)为源节点(记为1)到某个节点v的距离,即从节点1沿某一路径到节点v的所有链路长度之和。 令dij为节点i至节点j之间的距离。 1)初始化 Gp--表示网络节点的集合。先令Gp={1}。 对所有不在N中的节点v,写出 d(1,v) 若节点v与节点1直接相连 D(v)= ∞ 若节点v与节点1不直接相连

2)寻找一个不在N中的节点j,其Dj值最小。 Dj=min(Dj,Dj+dij)

(a) 网络拓扑 广域网 W4 广域网 W1 广域网 W6 5 12 10 D E B 4 7 8 A 广域网 W2 H 4 I 2 3 8 13 F 局域网 L1 2 G 3 3 2 C 16 12 6 广域网 W5 局域网 L2 广域网 W3 (a) 网络拓扑 W1 W4 B D 12 10 H 4 E 8 W6 5 7 W2 A 4 8 7 2 3 13 3 4 8 3 I F G L1 12 L2 2 2 6 W5 16 C W3 (b) 有向图

以路由器F为根的最短路径树 W1 有向图 W4 B D 12 10 H 4 E 8 W6 5 7 W2 A 4 8 7 2 3 13 3 4 I F G L1 12 L2 2 2 6 W5 16 C W3 以路由器F为根的最短路径树 W1 W4 12 B D E W6 W2 5 4 7 8 A 3 8 4 I F L2 G 3 L1 16 6 W5 W3

9.5.4 外部网关协议 BGP BGP 是不同自治系统的路由器之间交换路由信息的协议。 BGP 的较新版本是 1995 年发表的 BGP-4(BGP 的第 4 个版本)。 可以将 BGP-4 简写为 BGP。

BGP的主要目标是为处于不同AS中的路由器之间进行路由信息通信提供保证。 它既不是基于纯粹的链路状态算法,也不是基于纯粹的距离向量算法。它的主要功能是与其他自治域交换网络可达性信息。 在网络启动的时候,不同自治域的相邻路由器(运行BGP协议)之间互相打开一个TCP连接(保证传输的可靠性),然后交换整个路由信息库。 从那以后,只有拓扑结构和策略发生改变时,才会使用BGP更新消息发送。

BGP 使用的环境不同 因特网的规模太大,使得自治系统之间路由选择非常困难。 对于自治系统之间的路由选择,要寻找最佳路由是很不现实的。 自治系统之间的路由选择必须考虑有关策略。 因此,边界网关协议 BGP 只能是力求寻找一条能够到达目的网络且比较好的路由(不能兜圈子),而并非要寻找一条最佳路由。

BGP 发言人 每一个自治系统的管理员要选择至少一个路由器作为该自治系统的“BGP 发言人” 。 一般说来,两个 BGP 发言人都是通过一个共享网络连接在一起的,而 BGP 发言人往往就是 BGP 边界路由器,但也可以不是 BGP 边界路由器。

BGP 交换路由信息 一个 BGP 发言人与其他自治系统中的 BGP 发言人要交换路由信息,先建立 TCP 连接,然后在此连接上交换 BGP 报文以建立 BGP 会话(session),利用 BGP 会话交换路由信息。 使用 TCP 连接能提供可靠的服务,也简化了路由选择协议。 使用 TCP 连接交换路由信息的两个 BGP 发言人,彼此成为对方的邻站或对等站。

BGP 发言人和 自治系统 AS 的关系 BGP BGP 发言人 AS1 发言人 AS2 BGP 发言人 BGP 发言人 AS3

自治系统连通图 BGP 发言人互相交换网络可达性的信息后,各 BGP 发言人就可找出到达各自治系统的比较好的路由。 AS2 AS1 AS3

BGP 协议的特点 BGP 协议交换路由信息的结点数量级是自治系统数的量级,这要比这些自治系统中的网络数少很多。

BGP 协议的特点 BGP 支持 CIDR,因此 BGP 的路由表也就应当包括目的网络前缀、下一跳路由器,以及到达该目的网络所要经过的各个自治系统序列。 在BGP 刚刚运行时,BGP 的邻站是交换整个的 BGP 路由表。但以后只需要在发生变化时更新有变化的部分。这样做对节省网络带宽和减少路由器的处理开销方面都有好处。

理解:分组在路由器上的转发 当路由器收到一个IP分组时,路由器的处理软件首先检查该分组的生存时间,如果其生存时间TTL为0,则丢弃该分组,并给其源点返回一个分组超时ICMP消息; 如果生存期未到,则从IP分组头中提取目的地IP地址。目的IP地址与网络掩码进行屏蔽操作找出目的地网络号,在路由表中按照最长匹配原则查找与其相匹配的表项。 如果在路由表中未找到与其相匹配的表项,则将该分组放入默认的网关对应路由的缓冲区排队输出,并向源端返回不可到达信息; 如果找到匹配项,则选择最佳路由,进行头校验,TTL减1,封装链路层信息,并将该分组放入下一跳对应输出端口的缓冲区进行排队输出。

为了进一步理解路由器转发分组的工作原理,给出了一个互联网通信的实例。 其通信子网的IP编号为202.56.4.0、203.0.5.0和198.1.2.0,路由器1与网络1和网络2直接相连,与网络1相连的端口1的IP地址为202.56.4.1,与网络2相连的端口3的IP地址为203.0.5.2;路由器2与网络2和网络3直接相连,与网络2相连的端口5的IP地址为203.0.5.10,与网络3相连的端口8的IP地址为198.1.2.3。 下面我们来看用户A要传送一个数据文件给用户B时每个路由器的工作过程。

首先用户A把数据文件以IP分组的形式送到默认路由器1,其目的站点的IP地址为198.1.2.9。 第四步,网络接口软件调用ARP完成下一跳IP地址到物理地址(MAC)的映射。 获得下一跳的MAC地址后,便将原IP分组封装成适合网络2传送的数据帧,排队等待发送。

分组被送到路由器2后,根据目的IP地址确定目的网络号; 经过查找路由表获得该目的网络与路由器2直接相连。 路由处理软件将该IP分组放入网络端口8的发送缓冲区,并将目的IP地址198.1.2.9递交给网络端口处理软件。 需调用ARP获得目的主机的MAC地址,然后对IP分组进行封装,封装后的帧直接发送给目的主机B。