交联聚乙烯电缆结构及其试验方法 ——ICEAGESKY 2013-03-15.

Slides:



Advertisements
Similar presentations
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
Advertisements

2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
执教者:新庄中学 荔选红 一. 音调 1. 音调是指声音的高低 ; 探究 : 决定音调高低的原因 音调的高低取决于发声体振动的快慢, 振动越快音调越高,振动越慢音调越低。
班社会实践调查 ——大学生健康与运动状况调查.
欧姆定律和安全用电.
电力电缆的耐压试验方法探讨 前言 电力电缆经常作为发电厂、变电所及工矿企业的动力引入(或引出)线,在城乡电网中大量使用,在国际和国内已有越来越多的交联聚乙烯绝缘的电力电缆替代原有的充油油纸绝缘的电力电缆。交联电缆在投运前的试验项目上由于被试设备容量较大的原因,有的地方仍在沿袭使用直流耐压的试验方法。近年来国际、国内的很多研究机构的研究成果表明直流试验对交联聚乙烯电缆有不同程度的损害。为保障交联电缆的安全运行,大唐电力公司对电缆的交接和预防性试验做出了新的规定,即用交流耐压试验替代原来的直流耐压试验,以避免
第一单元 模具钳工基础. 第一单元 模具钳工基础 主要内容 课题一 模具钳工基本知识 课题二 划线及孔加工 课题三 研磨与抛光.
GB/T 电线电缆电性能试验方法 宣 讲 (二)
第四讲: 电气强度检验 主讲教师:昂勤树.
电路的等效变换 执教: 范世民.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
校园建设中的节能与消防问题 安徽建筑工业学院 姜长征.
PVC绝缘套管 技术指标 产品说明 105℃UL PVC材料 工作温度-5℃-105℃ 额定电压300V,600V 阻燃UL224VW-1
第2期 第1讲 电源设计 电子科技大学.
运算放大器与受控电源 实验目的 实验原理 实验仪器 实验步骤 实验报告要求 实验现象 实验结果分析 实验相关知识 实验标准报告.
现代电子技术实验 4.11 RC带通滤波器的设计与测试.
GB/T 3048的修订和诠释 主讲人 万树德 2008年6月第1稿,2012年8月第10次修改.
3-5 功率因数的提高 S P  电源向负载提供的有功功率P与负载的功率因数有关,由于电源的容量S有限,故功率因数越低,P越小,Q越大,发电机的容量没有被充分利用。 电源端电压U和输出的有功功率P一定时,电源输出电流与功率因数成反比,故功率因数越低,输电线上的发热损失越大,同时输电线上还会产生电压损失。
实验六 积分器、微分器.
第二章(2) 电路定理 主要内容: 1. 迭加定理和线性定理 2. 替代定理 3. 戴维南定理和诺顿定理 4. 最大功率传输定理
第一章 半导体材料及二极管.
根据欧姆定律测量导体的电阻 主讲:赵训义.
“描绘小灯泡的伏安特性曲线”实验中电路图的设计
第五章 1 欧姆定律.
第6章 第6章 直流稳压电源 概述 6.1 单相桥式整流电路 6.2 滤波电路 6.3 串联型稳压电路 上页 下页 返回.
第一章 电路基本分析方法 本章内容: 1. 电路和电路模型 2. 电压电流及其参考方向 3. 电路元件 4. 基尔霍夫定律
热烈欢迎各位同仁的到来 浙江省电力试验研究所 何文林 ( ) ( )
10.2 串联反馈式稳压电路 稳压电源质量指标 串联反馈式稳压电路工作原理 三端集成稳压器
物理 九年级(下册) 新课标(RJ).
实验4 三相交流电路.
ACAP程序可计算正弦稳态平均功率 11-1 图示电路中,已知 。试求 (1) 电压源发出的瞬时功率。(2) 电感吸收的瞬时功率。
人教版九年级物理 第十七章《欧姆定律》 第四节《欧姆定律在串并联电路中的应用》.
第十七章 第4节 欧姆定律在串、并联电路中的应用 wl com.
第三章:恒定电流 第4节 串联电路与并联电路.
低温锂离子电池应用介绍.
实验三、叠 加 原 理 的 验 证 一、实验目的 1.验证线性电路叠加原理的正确性 2.从而加深对线性电路的叠加性和 齐次性的认识和理解。
电线电缆职业技能培训 第二章 电性能检测 王卫东
PowerPoint 电子科技大学 R、C、L的相位关系的测量.
实验二 射极跟随器 图2-2 射极跟随器实验电路.
化学能转化为电能 温州市第十四中学 李雅.
6-1 求题图6-1所示双口网络的电阻参数和电导参数。
§2.5 二极管应用电路 §2.5.1 直流稳压电源的组成和功能 整 流 电 路 滤 波 电 路 稳 压 电 路 u1 u2 u3 u4
第 8 章 直流稳压电源 8.1 概述 8.2 稳压管稳压电路 8.3 具有放大环节的串联型稳压电路 8.4 稳压电路的质量指标.
实验一、 基尔霍夫定律 一、实验目的 二、实验原理与说明 即 Σi=0 1.验证基尔霍夫定律; 2.加深对参考方向的理解;
125H201—无卤阻燃热缩管 ≥1014 Ω.cm 技术指标 规格表-1 产品介绍 产品特点 性能 指标 试验方法
Power cable on-line monitoring
电路原理教程 (远程教学课件) 浙江大学电气工程学院.
电路原理教程 (远程教学课件) 浙江大学电气工程学院.
P3M2 PTH/SMT电容器的参数识别与简易测试
四 电动机.
实验一 单级放大电路 一、 实验内容 1. 熟悉电子元件及实验箱 2. 掌握放大器静态工作点模拟电路调试方法及对放大器性能的影响
第二节 电气设备的绝缘试验 电气设备绝缘预防性试验已成为保证现代电力系统安全可靠运行的重要措施之一。这种试验除了在新设备投入运行前在交接、安装、调试等环节中进行外,更多的是对运行中的各种电气设备的绝缘定期进行检查,以便及早发现绝缘缺陷,及时更换或修复,防患于未然。
实验二 基尔霍夫定律 510实验室 韩春玲.
滤波减速器的体积优化 仵凡 Advanced Design Group.
复习: 欧姆定律: 1. 内容: 导体中的电流与导体两端的电压成正比,与导体的电阻成反比。 2. 表达式: 3. 变形公式:
信号发生电路 -非正弦波发生电路.
监 测 继 电 器 EMR4.
1500V直流电缆简介 1500V直流电缆的特点: 在输送功率相同和可靠性指标相当的可比条件下,直流输电与交流输电相比,虽然换流站的投资比变电站的投资要高,但直流输电线路的投资比交流的投资要低。特别对于输电线路长达20km~40km时,直流电缆显然比交流电缆在综合费用上投资要小,而在输电技术上更可提高电力系统的运行可靠性和调度灵活性等。
FH实验中电子能量分布的测定 乐永康,陈亮 2008年10月7日.
13.5 怎样认识和测量电压.
本底对汞原子第一激发能测量的影响 钱振宇
《智能仪表与传感器技术》 第一章 传感器与仪表概述 电涡流传感器及应用 任课教师:孙静.
电力电子技术实验 - DC/DC拓扑变换
2.5.3 功率三角形与功率因数 1.瞬时功率.
电阻的串联 2014机电班.
高电压技术实验教学 高压教研室.
9.6.2 互补对称放大电路 1. 无输出变压器(OTL)的互补对称放大电路 +UCC
LED 驱动电源主要标准与安规要求 主要标准 安全规范; 电磁兼容(EMC); 功能与能效标准; 应用环境标准.
Presentation transcript:

交联聚乙烯电缆结构及其试验方法 ——ICEAGESKY 2013-03-15

主要内容 交联聚乙烯电缆结构 主绝缘电阻测试 外护套绝缘电阻测试 直流耐压及泄漏试验 交流耐压试验

交联聚乙烯电缆结构 PVC/PE外护套 金属铠装 铜屏蔽层 外半导体层 交联聚乙烯绝缘层 内半导体层 导体 在电缆结构上的所谓屏蔽实质上是一种改善电场分布的措施。电缆导体由多根导线绞合而成,他与绝缘层之间容易形成气隙,导体表面不光滑,会造成电场集中。在导体表面加一层半导电材料,他与导体等电位,并与绝缘接触良好,从而避免在导体与绝缘层之间发生局放,同样在绝缘表面和铜屏蔽之间也可能存在间隙,所以也加一层屏蔽,铜屏蔽的的作用:在正常运行时通过电容电流;当系统发生短路时,作为短路电流的通道,同时也起到屏蔽电场的作用。 内半导体层 导体 *

主绝缘电阻测试 从电缆的绝缘电阻的数值可初步判断电缆绝缘是否受潮、老化,并可检查由耐压试验检出的缺陷的性质,所以,耐压试验前后均应测量绝缘电阻。 0.6/1kV电缆试验电压采用1000V; 0.6/1kV以上电缆试验电压采用2500V; 6/6kV以上电缆试验电压采用5000V 良好电缆的绝缘电阻值通常很高,试验数据与出厂值比较应无明显变化; 试验前后应充分对电缆放电以避免电缆中的残余直流电荷对结果造成影响。放电时,应先经过放电棒前端电阻放电,再直接放电,否则会对电缆的绝缘结构造成冲击 此处注意绝缘电阻表屏蔽端子的作用 5000 V L G E *

外护套绝缘电阻测试 电缆埋入地下后,可对外护套绝缘电阻进行测试。测量电压通常采用500V,当绝缘电阻低0.5MΩ/km时,应用万用表正、反接线进行测量,当两次测得的阻值相差较大时,表明外护套已破损受潮。 当外护套破损进水后,由于地下水是电解质,在铠装层的镀锌钢带上会产生-0.76V电位,如内衬层也进水镀锌钢带和铜屏蔽之间会形成原电池会产生0.334+0.76=1.1V的电位差 500 V L G E *

直流耐压和泄漏电流试验 U~ 直流耐压试验对检查绝缘中的气泡、机械损伤等局部缺陷比较有效,泄漏电流对反映绝缘老化、受潮比较灵敏。 进行泄漏电流试验时应均匀升压,升压过程中在0.25、0.5、0.75、1倍试验电压下各停留1min,读取泄漏电流值,以便必要时绘制泄漏电流和试验电压的关系曲线。 绝缘良好的电缆泄漏电流很小,一般在几十微安以下,因而设备及引线的杂散电流相对较大,影响显著。此时如仍将微安表接在低压端测量,会有很大误差。必须将微安表接在高压端测量,并注意屏蔽后才能获得准确的结果。 电压为35kV及以上的电缆,由于试验电压高,通过试品表面及周围空间的泄漏电流相当大,所以两端的终端头均应屏蔽。 µA U~ 此处注意提问接线是否正确 *

直流耐压和泄漏电流试验 实际工作现场中,由于电缆铺设长度较长,将被测相电缆两端进行屏蔽不易实现,所以往往采用左图所示的接线方式,以邻相电缆作为屏蔽线进行测试。 这种测试方法看似解决了屏蔽问题,实际上却存在两个缺点: 1、每相电缆在试验中承受两次电压,对电缆主绝缘容易造成损伤; 2测得的泄漏电流数值并不是被测相缆芯对外皮及地的泄漏电流,而是被测相对外皮及另一相缆芯的泄漏电流数值。 因此这种测量方法并不妥当。 A B C A B C µA U~ *

直流耐压和泄漏电流试验 现场工作时,可以采用左图所示的接线方式进行试验。 A B C PA2 I2 A B C PA1 I1 现场工作时,可以采用左图所示的接线方式进行试验。 这时电源端采取屏蔽将表面和空间的杂散泄漏电流排除,另一端的杂散泄漏电流I2流经微安表PA2。于是,试品的泄漏电流IX可由微安表PA1的读数I1减去I2而得 µA µA U~ *

直流耐压试验存在的问题 由于交联聚乙烯电缆材质、结构的特点,所以尽管在正式颁布的 标准中要求在交接试验中做直流耐压,但实际上有不少人 认为对交联聚乙烯绝缘电缆不宜采用直流耐压试验, 其基本观点是: 1、直流电压试验过程中在交联聚乙烯绝缘电缆及附件 中会形成空间电荷,对绝缘有积累效应,加速绝缘老化, 缩短使用寿命。 2、直流电压下绝缘电场分布与实际运行电压不同,前者 按电阻率分布而后者按介电常数分布,因此,直流试验合格的交 联聚乙电缆,投入运行后,在正常工作电压的作用下也会发生绝 缘事故。 *

交流耐压试验 多年以来,由于人们认识水平和试验设备的原因,橡塑电缆在现场以直流耐压试验或0.1Hz频率耐压试验代替交流耐压试验,经过多年实践发现上述两种方法都存在很多问题,无法对橡塑电缆的绝缘优劣起到有效地检验作用。 根据IEC最新标准规定,频率在20Hz~300Hz之间的交流耐压与工频50Hz下的交流耐压基本可以等效,因此110kV及以上的橡塑电缆目前普遍采用20Hz~300Hz的变频串联谐振试验装置进行交流耐压试验。 220kV及以上:试验电压为1.36倍U0;110kV/66kV:试验电压为1.60倍U0,时间为5分钟。 电抗器 电容分压器 变频柜 380V 测量装置 kV 控制台

应用举例 以110kV交联聚乙烯电缆为例 64/110kV 1500m 400mm2 C 额定电压 长度 截面积 A B 电容量 0.156μF/km

试验前参数计算 试验电压: U=1.6U0=1.6X64=102.4(kV) 高压电抗器电感值 试验电压频率: 52.05(Hz)

原理接线图 试验原理接线如图所示,其中变频器用来改变工频交流电频率确保试验电压的频率处在谐振点上,通过试验变压器将电压抬升到试验所需电压,考虑到试验中容升效应的影响,试验变压器测量端的电压无法准确反应试品两端电压,在试品高压端并联电容分压器监测试品电压。

试验步骤 1)对被试电缆充分放电,按照原理图进行试验接线,调试好设备。试验场地四周装设围栏,悬挂“止步,高压危险!”标示牌。 2)测量被试电缆的绝缘电阻,确认绝缘电阻合格。 3)将试验引线接上被试电缆终端接头。 4)检查试验回路所有接线,检查测量仪表,准备开始试验。 5)合上试验电源,调整变频电源的频率,将试验回路调至谐振,此时调压旋钮置于初始位置。 6)将输出电压逐渐升至试验电压,保持试验电压5min,然后快速降压至零,断开试验电源,高压端挂接地线。 7)复测被试电缆的绝缘电阻。 8)试验过程中如发生闪络、击穿或异常情况,应立即暂停试验。检查被试电缆及试验设备是否损坏,如有损坏须立即检修。 9)试验中无异常现象发生,复测绝缘电阻与试验前无明显变化,则被试电缆通过交流耐压试验。

串联谐振进行交流耐压的优点 1)应用串联谐振进行交流那压试验,省去了传统交流那压试验中的大功率调压装置,很大程度上减少了实验设备的体积和重量为试验的开展提供了方便。 2)谐振电源是谐振式滤波电路,能改善输出电压的波形畸变,获得很好的正弦波形,有效的防止了谐波峰值对试品的误击穿。 3)对于传统交流那压试验,当被试品存在绝缘缺陷,试验中绝缘弱点被击穿,此时的击穿电流较之试验电流增大几十倍,造成故障点烧损扩大故障范围,给绝缘缺陷的分析带来很大困难。串联谐振装置不存在这方面问题,发生击穿时,由于试品电容量的改变,试验电路立即脱谐,回路电流瞬间变小,即找到了故障点又避免了故障点的烧损。

Thank You !