第4讲 直线与圆、圆与圆的位置关系.

Slides:



Advertisements
Similar presentations
教材的地位和作用  ① “ 直线和圆的位置关系 ” 是初中数学九年级上册 第二十四章第二节的中心内容。是在学习了点和 圆的位置关系的基础上进行学习的。  ②直线和圆的位置关系的应用比较广泛, 是为后 面学习圆和圆的位置关系作铺垫的一节课, 在今后 的解题及几何证明中, 也将起到重要的作用。
Advertisements

精品课程《解析几何》 第三章 平面与空间直线.
§3.4 空间直线的方程.
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
第八章 向量代数 空间解析几何 第五节 空间直线及其方程 一、空间直线的点向式方程 和参数方程 二、空间直线的一般方程 三、空间两直线的夹角.
3.4 空间直线的方程.
第七章 空间解析几何 §5 空间直线及其方程 一、空间直线的一般方程 二、空间直线的对称式方程与参数方程 三、两空间直线的夹角
代数方程总复习 五十四中学 苗 伟.
圆的一般方程 (x-a)2 +(y-b)2=r2 x2+y2+Dx+Ey+F=0 Ax2+Bxy+Cy2+Dx+Ey+ F=0.
4.1.2 圆的一般方程 南溪中学 周翔.
《解析几何》 乐山师范学院 0 引言 §1 二次曲线与直线的相关位置.
圆锥曲线复习.
练习 1。点P(5a+1,12a)在圆(x-1)2+y2=1的内部,则a的取值 范围是 2.点P( )与圆x2+y2=1的位置关系是 ( )
第2章 平面解析几何初步 圆的方程(2).
巫山职教中心欢迎您.
1.2.2函数的表示法 圆的一般方程 (第一课时) 高二数学组 平度九中---张杰
直线与双曲线的位置关系.
解析几何 4.1.2圆的一般方程 邵东一中高1数学组 林真武.
圆的方程复习.
圆 的 标 准 方 程.
圆的一般方程 x2+y2+Dx+Ey+F=0 O C M(x,y).
圆复习.
6.9二元一次方程组的解法(2) 加减消元法 上虹中学 陶家骏.
1.直线过点(2,4)与抛物线y2=8x只有一个公共点,这样的直线共有(  )
1.设圆的圆心是C(a,b),半径为r,则圆的标准方程是(x-a)2+(y-b)2=r2
直线与圆的位置关系 问题:在纸上画一条直线L,把钥匙环看作一个圆,在纸上移动钥匙环,你能发现在钥匙环移动的过程中,圆与直线L的公共点个数的变化情况吗? 【分析】通过观察我们发现直线与圆的位置关系有三种,如图: (1) (2) (3)
直线与圆的位置关系 市一中 九年级数学组.
第三章 《圆》复习 第二课时 与圆有关的位置关系
新课导入 直线与圆有怎样的位置关系? 传送带 卷尺.
圆 与 的 位 置 关 系 圆与圆的位置关系 新县第三初级中学 邱家胜.
初中数学 九年级(下册) 5.3 用待定系数法确定二次函数表达式.
九年级数学(上)第五章 直线与圆的位置关系.
第三章 圆 第六节 圆和圆的位置关系.
3、6 圆与圆的位置关系.
第23章 圆 23.2  圆与圆的位置关系 下一页.
圆和圆的位置关系 本资料来自于资源最齐全的21世纪教育网 平昌县粉壁小学:魏建.
第8课时 直线和圆的 位置关系(2).
回 顾 点和圆的位置关系有几种? 用数量关系如何来判断? · ⑴点在圆内 dr.
直线和圆的位置关系.
直线和圆的位置关系(4).
两圆的公切线 朱唐庄中学 王娟.
第9讲 圆锥曲线的热点问题.
章末归纳总结.
义务教育教科书《数学》九年级上册 切线的判定
天才就是百分之一的灵感,百分之九十九的汗水!
北师大版(必修2) 课题:§2.3 直线与圆的位置关系 授课教师:韩伟 年级:高中一年级 单位:阜师院附中.
习题课 阶段方法技巧训练(一) 专训2 切线的判定和性质 的四种应用类型.
第四章 圆与方程 圆的标准方程 圆的一般方程.
双曲线的简单几何性质 杏坛中学 高二数学备课组.
§7.2 直线的方程(1) 1、经过两点P1(x1,y1),P2(x2,y2)的斜率公式: 2、什么是直线的方程?什么是方程的直线?
2.1.2 空间中直线与直线 之间的位置关系.
2.6 直角三角形(二).
直线和圆的位置关系复习课 桃江中学 芙熔.
3.4 圆心角(1).
3.3 垂径定理 第2课时 垂径定理的逆定理.
直线和圆的位置关系.
直线与圆的位置关系.
复习: 若A(x1,y1,z1) , B(x2,y2,z2), 则 AB = OB - OA=(x2-x1 , y2-y1 , z2-z1)
抛物线的几何性质.
相似三角形存在性探究 嘉兴市秀洲区王江泾镇实验学校 杨国华
第24章 圆 24.6 三角形的内切圆 学习目标 朱瑞丰 重难互动探究 课堂小结.
直线和圆的位置关系 ·.
空间平面与平面的 位置关系.
二次函数(一) 讲师:韩春成 学而思初中数学教研主任 中考研究中心专家成员 学而思培优“卓越教师”.
3.4圆周角(一).
直线的倾斜角与斜率.
海平面 海平面 直线与圆的位置关系. 海平面 海平面 直线与圆的位置关系 二:目标分析:          1. 知识目标:能说出直线和圆的三种位置关系的定义,能在图上指认圆的切线和割线;掌握直线和圆的位置关系的性质和判定,会根据给出的条件确定直线和圆的位置关系。         2. 
28.2.2直线与圆的位置关系 海口一中 李士军  .
第二十四章 圆 直线和圆的位置关系 北京市第二十中学 王云松.
复习回顾 条件:不重合、都有斜率 条件:都有斜率 两条直线平行与垂直的判定 平行:对于两条不重合的直线l1、l2,其斜率分别为k1、k2,有
Presentation transcript:

第4讲 直线与圆、圆与圆的位置关系

知 识 梳 理 1.直线与圆的位置关系 设直线l:Ax+By+C=0(A2+B2≠0), 圆:(x-a)2+(y-b)2=r2(r>0), d为圆心(a,b)到直线l的距离,联立直线和圆的方程,消元后得到的一元二次方程的判别式为Δ.

  方法 位置关系    几何法 代数法 相交 d r Δ 0 相切 d r 相离 Δ 0 < > = = > <

代数法:两圆方程联立组成方程组的解的情况   方法 位置关系     几何法:圆心距d与r1,r2的关系 代数法:两圆方程联立组成方程组的解的情况 相离 d>r1+r2 无解 外切 d=r1+r2 一组实数解 相交 |r1-r2|<d<r1+r2 两组不同的实数解 内切 d=|r1-r2|(r1≠r2) 内含 0≤d<|r1-r2|(r1≠r2)

[感悟·提升] 1.两个防范 一是应用圆的性质求圆的弦长,注意弦长的一半、弦心距和圆的半径构成一个直角三角形,有的同学往往漏掉了2倍,如(3); 二是在判断两圆位置关系时,考虑要全面,防止漏解,如(4)、(5),(4)应为两圆外切与内切,(5)应为两圆相交、内切、内含.

2.两个重要结论 一是两圆的位置关系与公切线的条数: ①内含时:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条. 二是当两圆相交时,把两圆方程(x2,y2项系数相同)相减便可得两圆公共弦所在直线的方程.

规律方法 判断直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.

规律方法 (1)判断两圆的位置关系常用几何法,即用两圆圆心距与两圆半径和与差之间的关系,一般不采用代数法. (2)当两圆相交时求其公共弦所在的直线方程或是公共弦长,只要把两圆方程相减消掉二次项所得方程就是公共弦所在的直线方程,再根据其中一个圆和这条直线就可以求出公共弦长.

【训练2】 (1)圆O1:x2+y2-2x=0和圆O2:x2+y2-4y=0的位置关系是________. (2)设两圆C1、C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|=________.

答题模板9——与圆有关的探索问题 【典例】 (12分)已知圆C:x2+y2-2x+4y-4=0.问在圆C上是否存在两点A、B关于直线y=kx-1对称,且以AB为直径的圆经过原点?若存在,写出直线AB的方程;若不存在,说明理由.

由题意知OA⊥OB,则有x1x2+y1y2=0,(8分) 也就是x1x2+(x1+b)(x2+b)=0. ∴2x1x2+b(x1+x2)+b2=0. ∴b2+4b-4-b2-b+b2=0,化简得b2+3b-4=0.(10分) 解得b=-4或b=1,均满足Δ>0,(11分) 即直线AB的方程为x-y-4=0,或x-y+1=0.(12分)

【自主体验】 在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是________.