Cost-efficient Deployment of Relays for LTE-Advanced Cellular Networks

Slides:



Advertisements
Similar presentations
1/31 Chapter 4 Heterogeneous Wireless Communications for Vehicular Networks Andrea Conti, Alessandro Bazzi, Barbara M. Masini, and Oreste Andrisano ∗
Advertisements

教育局資訊科技教育組 程序表講者 簡介計劃目的 佘孟先生 ( 教育局資訊科技教育組總課程發展主任 ) 使用津貼安排 傅永洪先生 ( 教育局資訊科技教育組高級行政主任 ) 專業發展課程 卓偉嘉先生 ( 教育局資訊科技教育組高級課程發展主任 ) 技術顧問及項目管理服務 林詠宜女士.
研究生大進擊 盧永豐
無線網路與行動通訊 Wireless Network 醫務管理暨醫療資訊學系 陳以德 副教授: 濟世CS202-3
臺北市政府公務人員訓練處 103 年度「行動公務訊息平台研習班」 新一代智慧網路通訊應用趨勢 及電磁波知識簡介
二維品質模式與麻醉前訪視滿意度 中文摘要 麻醉前訪視,是麻醉醫護人員對病患提供麻醉相關資訊與服務,並建立良好醫病關係的第一次接觸。本研究目的是以Kano‘s 二維品質模式,設計病患滿意度問卷,探討麻醉前訪視內容與病患滿意度之關係,以期分析關鍵品質要素為何,作為提高病患對醫療滿意度之參考。 本研究於台灣北部某醫學中心,通過該院人體試驗委員會審查後進行。對象為婦科排程手術住院病患,其中實驗組共107位病患,在麻醉醫師訪視之前,安排先觀看麻醉流程衛教影片;另外對照組111位病患,則未提供衛教影片。問卷於麻醉醫師
Chap. 4 Techniques of Circuit Analysis
-Artificial Neural Network- Hopfield Neural Network(HNN) 朝陽科技大學 資訊管理系 李麗華 教授.
第4讲 企业财务管理.
Chapter 8 Liner Regression and Correlation 第八章 直线回归和相关
Mode Selection and Resource Allocation for Deviceto- Device Communications in 5G Cellular Networks 林柏毅 羅傑文.
A Novel Geographic Routing Strategy over VANET
教育部補助「行動寬頻尖端技術跨校教學聯盟第三期計畫-行動寬頻網路與應用-小細胞基站聯盟中心」 Cloud RAN: 雲端無線接取網路與應用 課程單元:多基地台協同運作 (CoMP) (Draft) 計畫主持人:許蒼嶺 授課教師:萬欽德.
Author: Shigeki Takeuchi,Hiroyuki Koga, Katsuyoshi Iida,
IEEE TRANSACTIONS ON MAGNETICS, VOL. 49, NO. 3, MARCH 2013
-Artificial Neural Network- Adaline & Madaline
AN INTRODUCTION TO OFDM
An Adaptive Cross-Layer Multi-Path Routing Protocol for Urban VANET
Applications of Digital Signal Processing
Rate and Distortion Optimization for Reversible Data Hiding Using Multiple Histogram Shifting Source: IEEE Transactions On Cybernetics, Vol. 47, No. 2,February.
Thinking of Instrumentation Survivability Under Severe Accident
指導教授:許子衡 教授 報告學生:翁偉傑 Qiangyuan Yu , Geert Heijenk
模式识别 Pattern Recognition
Speaker: Kai-Wei Ping Advisor: Prof Dr. Ho-Ting Wu 2014/06/23
無線區域網路 IEEE 標準 1997年制定 規範不同層的運作方式 不同特性的標準
軍用及公、民用無線電頻譜整理規劃 2GHz以上頻段現況與應用
Acoustic规范和测试 Base Band 瞿雪丽 2002/1/30.
網路技術管理進階班---區域網路的技術發展
BTS3911E 一体化站点解决方案 支持UL平滑演进,降低CAPEX 小站点,大容量,提升用户体验 高集成度 ,降低部署成本
教育部補助「行動寬頻尖端技術跨校教學聯盟計畫-行動寬頻網路與應用-小細胞基站聯盟中心計畫」 Small Cell創新應用與服務專題 課程單元: LTE之安全需求、安全特性 與安全機制簡介 計畫主持人:許蒼嶺 授課教師:李宗南、簡銘伸、李名峰 教材編撰:李名峰 國立中山大學 資訊工程系.
附錄 通訊協定堆疊.
Noise & Distortion in Microwave Systems.
第4章 网络互联与广域网 4.1 网络互联概述 4.2 网络互联设备 4.3 广域网 4.4 ISDN 4.5 DDN
HLA - Time Management 陳昱豪.
1.Per unit (PU value) 2. Voltage Drop
Journal of High Speed Networks 15(2006)
Hsiang-Hung Liu, Huan-Yi, Ho, Cheng-Fu Chou
Abstract 研究了主分量載波(PCC)選擇一個分佈式的方式來管理干擾,並提高在異構網絡小區邊緣性能。以避免由於相鄰基站(BS)之間的路徑損耗和減少分量載波的細胞停運。 基於用戶設備(UE)執行的切換測量載體重選是必要的。主要建議分量載波選擇三種策略; Selfish、Altruistic和Symmetric.
聲轉電信號.
Inventory System Changes and Limitations
2019/1/2 Experimental Analysis on Performance Anomaly for Download Data Transfer at IEEE n Wireless LAN 在IEEE n無線LAN上下載數據傳輸的性能異常的實驗分析 Author:
Formal Pivot to both Language and Intelligence in Science
DOE II建築節能模擬軟體介紹 -空調節能設計篇
報告人:林冠丞 指導教授:陳偉業 班級:碩研資管一甲 學號:MA490212
Advisor : Dr. Frank Y. S. Lin Present by :Yi-Wei Li
Part 2 無線網路的技術.
Advanced Basic Key Terms Dependency Actor Generation association
Network Design in the Supply Chain (Part1)
推动全球能源变革,以创造清洁、安全、繁荣的低碳未来。
Reporter: Wu, Cheng-Xuan Teacher: Horng, Gwo-Jiun
Version Control System Based DSNs
Sensor Networks: Applications and Services
XIV. Orthogonal Transform and Multiplexing
2019/4/8 A Load Balancing Mechanism for multiple SDN Controllers based on Load Informing Strategy Miultiple controller 的 load balancing 機制,使用一個叫 Load informing.
Performance Evaluation of Capacity Based CoMP
Speaker: Wang,Song-Ferng Advisor: Dr. Ho-Ting Wu 2015/7/6
從 ER 到 Logical Schema ──兼談Schema Integration
Interference-Aware IEEE WiMax Mesh Networks
Distance Vector vs Link State
Efficient Query Relaxation for Complex Relationship Search on Graph Data 李舒馨
Wireless Link Layer and IEEE
Distance Vector vs Link State Routing Protocols
Advanced Basic Key Terms Dependency Generalization Actor Stereotype
行動寬頻介接網路與IoT實務應用-實驗課程
MGT 213 System Management Server的昨天,今天和明天
Wireless Physical Layer
Principle and application of optical information technology
Chapter 7. The Space Segment
WiFi is a powerful sensing medium
Hybrid fractal zerotree wavelet image coding
Presentation transcript:

Cost-efficient Deployment of Relays for LTE-Advanced Cellular Networks Yijie Wang, Gang Feng and Yide Zhang 2011 IEEE International Conference on Communications(2011 ICC) Advisor:Han-Chieh Chao Student:Weijen Yu Date :2011/8/9

Outline Introduction System Model Cost-Efficient Deployment of Type I Relay Numerical Results and Discussions Conclusion

Introduction Relay is used in LTE-Advanced cellular networks to assist eNB (evolved Node Base-station) coverage extension and throughput enhancement. Compared to eNB, relay is advantageous on unit cost. Aim at analyzing the tradeoff deployment cost VS. the cell performance gain overall cell performance VS. satisfaction level for individual users. Two types of relay node (RN) have been defined Type 1:Extend signal and coverage Type 11: Improve QoS and raise system capacity 在佈建成本及效能增益取得平衡 在整個cell效能及user的滿意程度取得平衡

System Model A. System Infrastructure A network of 7 cells is modeled Omni antennas for direct link (eNB to UE link) and access link (RN to UE link), Directional antennas for backhaul link (eNB to RN link). Frequency reuse applies among multiple RNs and eNB Distance among RNs is large enough to avoid interference. 2*2 MIMO and advanced transmission schemes (SDMA) eNB can transmit simultaneously to the multiple RNs 在LTE-A裡,有一些因素會影響throughput 是用2*2 MIMO的天線加上的進階傳輸方法

B. Propagation Models Path loss models significantly affect system performance The detailed quantitative path loss values for three types of links can be found in Table II. 使用最新的propagation模型in [5]

C. Backhaul Subframe Allocation Use FDD mode Type I relay sends its own broadcast channel and synchronous channel in subframe 0,4,5,9. Due to RN’s half duplex characteristic subframe 0,4,5,9 cannot be assigned as backhaul downlink subframe for Type I relay to receive information from eNB. Backhaul Subframe Allocation也會影響到throughput 用4個Backhaul Subframe 消除backhaul 瓶頸影響

D. Interference Models Pi is the transmission power of the sender SINR at the i -th link in each receiving antenna of UE is calculated Pi is the transmission power of the sender k is the rank of MIMO channel matrix vi,k ( k =1, 2 …) is the singular values of i-th link’s channel matrix N denotes the noise power 因為RN之間可能會有干擾 User的接收天線在第 i個 link的SINR P是sender的transmission power K是矩陣的rank V是第 i個 link的channel matrix的奇異值 N是噪音

The capacity of these UEs is given by Calculate the achievable rate for i-th link by Shannon capacity formula The capacity of these UEs is given by where Cbackhaul and Caccess are the achievable rates for backhaul and access links respectively 用Shannon 來算 achievable rate

Cost-Efficient Deployment of Type I Relay An example of total cost per unit for different RAP(Radio Access Point) types is given in Table I Type 1Relay 也是一種小型的BS,管理自己擁有的UE

λb and λc are the eNB and RN deployment densities respectively. A. Iso-performance Curves for LTE-A Relay–enhanced Systems The linear cost model for total system cost C is where cb and cr are the total cost of an eNB and an RN respectively. λb and λc are the eNB and RN deployment densities respectively. 在LTE-A network裡,total cost包含eNB和RN的佈建

Examine the necessity of deploying RNs where λb,0 is the eNB density for pure eNB systems 在一樣的throughput 根據Iso-performance relay 密度增加 則BS密度減少 Iso-performance是一個理想的情況 若是frequency reuse 時 佈建relay 不一定會增加performance gain

B. Cost Efficiency with Type I Relays Optimal static deployment through investigating tradeoff between the deployment cost and the cell performance gain. The cost efficiency η defined where n is number of relays in a cell B is the cell system bandwidth C(n) is cell achievable rate with n relay deployed

C. Tradeoff Analysis of Progressive Deployment for Type I Relays Based on the Customer Satisfaction Index (CSI) used in economical theory Define relative user satisfaction level Sn,k of user k when n relays are deployed as where Cn,k is the throughput of user k when n relays in a cell. 接著考慮 Progressive Deployment , 當有預算限制時 network operator較喜歡逐漸地佈建RN 這是符合消費者需求方法,更多的relay可以幫助cell capacity和服務更多user 但是user可能會遭受到嚴重的干擾 因此降低performance 換句話說,需要在 system performance 和 single user performance level做取捨 依照經濟理論的Customer Satisfaction Index 我們定義了Average Customer Satisfaction Index為了達到cellular system capacity and average user satisfaction level. C是user k的throughput 在一個cell有n個relay時 C n-1,k =0 表示 user k是在佈建第 n個 才被服務到

Card() is the number of elements of a set. Use Kn to denote the number of users served in phase n Kn users can be divided into two set φn for users also being served in phase n-1 φ n’ for users initially admitted into LTE-A systems in phase n. Defined the ACSI of phase n to evaluate the effectiveness of progressive deployment ACSI where α = Card(φn)/Kn Card() is the number of elements of a set. ACSI的值是正的表示average user satisfaction level較好 隨著RN逐漸增加,ACSI的值會因為干擾而下降 因此在RN的佈建時要檢查ACSI是不是正數

Numerical Results and Discussions A. Simulation setting and parameters Simulation model in MATLAB The transmission power of eNB and RN is 46dBm and 37dBm respectively. 1.從Iso-performance curve 來觀察 RN密度 2.研究靜態佈建RN dependent on backhaul link distance 和 unit cost 3.對於逐漸佈建RN,會去看overall cell capacity and average user satisfaction level

B. Iso-performance Curves on Deployment of Type I Relay Relay 個數從1~12 因為當超過12會造成performance 下降 看到2條線相切的地方不會是在X軸 表示使用RN比較好,因為使用frequency reuse 但是用太多的RN不一定會得到較好的performance 固定X0 RN由Y1到Y0 這曲線也可以拿來預測 當希望capacity達到3*10平方MBPS時 eNB密度是0.5 則RN的個數上界為4個 多蓋就浪費了

C. Cost Efficiency η VS. Backhaul Link Distance d where R is the radius of the cell and Dbackhaul is backhaul link distance. 這張是看說eNB跟RN之間的距離 當D愈大則d越小 一開始Cost Efficiency 會隨著relay個數增加 到了高峰後 就隨著relay個數減少 不過太多的RN會讓成本持續增加但capacity並沒有增加 太多的RN也會因干擾而造成performance下降

D. Cost Efficiency η vs. the Total Cost Ratio r r=Cr/Cb 一個RN的cost大小,也會影響Cost Efficiency 分別在0.17跟0.33來看 在relay的個數等於7的時候Cost Efficiency 下降 r越小表示RN越便宜 r=0.1是Cost Efficiency 較大的

E. Tradeoff Gain for Progressive Deployment of Type I Relay 這事說明在用逐步佈建RN的時候user滿意度與relay個數的關系 1~4的時候ASCI都是正的,表示使用者對於目前佈建的滿意度大於下一個佈建的滿意度, 但performance gain是減少的 當ASCI是負的時候 意思是說滿意度變差 即使cell capacity增加 作者舉列 若一個網路營運商 每年都佈建一個RN來滿足使用者需求的話 最大的滿意度是 RN= 4 不過若是佈建到5.6.7的話 雖然會稍微降低滿意度 但能夠有較好的cell capacity 和有更多的使用者被服務

Conclusion Investigated the optimal deployment of RNs in LTE-A networks. The iso-performance curve for tradeoff between eNB density and RN density is not an ideal case in LTE-A networks. The optimal number of RNs is between 7 and 11 for static deployment. For the progressive deployment, the optimal number is 4 to achieve tradeoff gain between cell capacity and relative average user satisfaction level.