Time Frequency Analysis and Wavelet Transforms Oral Presentation

Slides:



Advertisements
Similar presentations
对本书、视频等任何 MATLAB 问题,作者做到有问必答! 你买的不仅仅是书,更是一种 “ 有问必答 ” 的服务!
Advertisements

北京大学数字视频编解码技术国家工程实验室 AVS标准工作组,AVS产业技术创新战略联盟
MPEG Family.
Outline Image Compression Image Understanding
學生:林育暉 指導教授:蔣依吾 國立中山大學資訊工程學系
Audio.
XI. Hilbert Huang Transform (HHT)
A TIME-FREQUENCY ADAPTIVE SIGNAL MODEL-BASED APPROACH FOR PARAMETRIC ECG COMPRESSION 14th European Signal Processing Conference (EUSIPCO 2006), Florence,
深層學習 暑期訓練 (2017).
Blind dual watermarking for color images’ authentication and copyright protection Source : IEEE Transactions on Circuits and Systems for Video Technology.
AN INTRODUCTION TO OFDM
IV. Implementation IV-A Method 1: Direct Implementation 以 STFT 為例
Applications of Digital Signal Processing
Rate and Distortion Optimization for Reversible Data Hiding Using Multiple Histogram Shifting Source: IEEE Transactions On Cybernetics, Vol. 47, No. 2,February.
指導教授:許子衡 教授 報告學生:翁偉傑 Qiangyuan Yu , Geert Heijenk
XV. Applications of Wavelet Transforms
XVI. Applications of Wavelet Transforms
JPEG图像编码标准 §3.4 内容提要 本节主要介绍JPEG图像压缩编码算法(DCT变换算法)、图像数据文件格式 (JFIF,JPEG File Interchange Format)。 最后,对JPEG 2000进行一个简单的介绍。 JPEG.
第十一章 影像與視訊壓縮.
第九章 影像壓縮.
Principle and Application of Digital Television
視訊串流\Streaming Video Part-2-3 Compression Digital image/video
數位典藏之數位影像處理技術探討 雲端上的寶藏~ 國立新港藝術高中 蘇淵源.
第十章 基于立体视觉的深度估计.
Mpeg Family 簡介 第六組 B 呂孟庭 B 廖彥鈞.
視訊串流\Streaming Video Part-1 Multimedia on Computer Digital
Noise & Distortion in Microwave Systems.
淺談視訊壓縮技術 陳宏昇 楊凱超.
Decision Support System (靜宜資管楊子青)
影像篡改之偵測與定位 (運用密碼與編碼技術)
微程序控制器 刘鹏 Dept. ISEE Zhejiang University
品質管理之穩健性設計 應用田口方法 工業工程與管理系教授 楊 烈 岱
组合逻辑3 Combinational Logic
無線通訊系統模擬 姓名:顏得洋 學號:B
数字图像处理(2) 图像文件格式 东北林业大学信息学院 任洪娥
數位影像壓縮 技術簡介 第四組 陳孝賢.
聲轉電信號.
Introduction to Multimedia Coding
第十章 轉換編碼 視轉換為座標軸之旋轉 視轉換為基底函數之分解 影像轉換 轉換編碼之方法 JPEG DCT 演算法 JPEG DCT 之結果
混合式浮水印技術應用於H.264/AVC 錯誤偵測及隱匿
Source: IEEE Transactions on Image Processing, Vol. 25, pp ,
第8章 DCT与JPEG编码 JPEG(Joint Photographic Experts Group联合图象专家组)是(ITU的前身)国际电话与电报咨询委员会CCITT与ISO于1986年联合成立的一个小组,负责制定静态图像的编码标准 1992年9月JPEG推出了ISO/IEC 10918标准(CCITT.
Review of Information Theory
A high payload data hiding scheme based on modified AMBTC technique
Advanced Digital Signal Processing 高等數位訊號處理
信 息 隐 藏 技 术 与 应 用 第八章 数字水印的评价理论 和测试基准
VIDEO COMPRESSION & MPEG
數位浮水印技術及其應用.
XIV. Orthogonal Transform and Multiplexing
高性能计算与天文技术联合实验室 智能与计算学部 天津大学
Mechanics Exercise Class Ⅰ
105-1 Data Structure Exam /12/27.
VII. Data Compression (A)
图像压缩标准JPEG.
Design and Analysis of Experiments Final Report of Project
中国科学技术大学计算机系 陈香兰 2013Fall 第七讲 存储器管理 中国科学技术大学计算机系 陈香兰 2013Fall.
虚 拟 仪 器 virtual instrument
Component 2: Workshop 第二部分研讨会
An Efficient MSB Prediction-based Method for High-capacity Reversible Data Hiding in Encrypted Images 基于有效MSB预测的加密图像大容量可逆数据隐藏方法。 本文目的: 做到既有较高的藏量(1bpp),
李宏毅專題 Track A, B, C 的時間、地點開學前通知
信号与图像处理基础 Image Compression 中国科技大学 自动化系 曹 洋.
第九章 植基於小波係數的影像壓縮法.
More About Auto-encoder
張真誠 逢甲大學 講座教授 中正大學 榮譽教授 清華大學 合聘教授
醫工所碩士二年級 R 葉昱甫 電子所碩士一年級 R 謝博鈞 電信所碩士一年級 R 王欣平
2 Number Systems, Operations, and Codes
簡單迴歸分析與相關分析 莊文忠 副教授 世新大學行政管理學系 計量分析一(莊文忠副教授) 2019/8/3.
Principle and application of optical information technology
第一章 JPEG介紹.
Hybrid fractal zerotree wavelet image coding
Presentation transcript:

Time Frequency Analysis and Wavelet Transforms Oral Presentation Image Compression JPEG and JPEG 2000 Presenter:許銘宸 November 9,2017

Goal Save the memories Reduce the transmission time

How Low frequency parts correlation between pixels→high sensitive for the human eyes ex:large area with the same color High frequency parts correlation between pixel→low insensitive for the human eyes ex:edge、corner High frequency parts are the information that we are uninterested

Evaluation Mean Square Error (MSE): 𝑀𝑆𝐸= 𝑥=0 𝑊−1 𝑦=0 𝐻−1 𝐼 𝑥,𝑦 −𝐾 𝑥,𝑦 2 𝑊𝐻 I(x,y): original image K(x,y): reconstructed imag H: height of image W: width of image Peak signal-to-noise ratio (PSNR): 𝑃𝑆𝑁𝑅=10 log 10 𝑀𝐴𝑋 𝐼 2 𝑀𝑆𝐸 𝑀𝐴𝑋 𝐼 :the maximum possible pixel value of the image

Flowchart of JPEG

Correlation between pixels

RGB to YCbCr Sensitivity for human eyes: Red(R) > Green(G) > Blue(B) Luminance(Y) > Chrominance(Cb, Cr) 𝑌 =+0.299×𝑅+0.587×𝐺+0.114×𝐵 𝐶 𝑏 =−0.169×𝑅−0.331×𝐺+0.500×𝐵 𝐶 𝑟 =+0.500×𝑅−0.419×𝐺−0.081×𝐵

Downsampling Y Cb Cr Y Cb Cr Y Cb Cr or Y Cb Cr 4:4:4 (No downsampling) 4:2:2 (Downsampling every 2 pixels in vertical or horizontal direction.) 4:2:0(Downsampling every 2 pixels in both vertical and horizontal direction.) Y Cb Cr Y Cb Cr Y Cb Cr or Y Cb Cr

KL Transform & DCT Transform Fourier Transform & Fourier Series (1-Dimension): combination of sines and cosines. KL Transform & DCT Transform (2-Dimension): combination of many kinds of simple pattern (i.e. bases).

KLT & DCT Karhunen-Loeve Transform (KLT): Every image has its own bases Advantage: Minimums the Mean Square Error(MSE). Disadvantage: We need to find the bases information → Computationally expensive. We need to save the bases information → More data. Discrete Cosine Transform (DCT): Compress different image by the “same” bases Computationally efficient. The performance of MSE is not as well as KL Transform But it’s good enough.

Formulas of DCT: DCT 𝐹 𝑢,𝑣 = 2𝐶 𝑢 𝐶 𝑣 𝑁 𝑖=0 𝑁−1 𝑗=0 𝑁−1 𝑓 𝑖,𝑗 cos 2𝑖+1 𝑢𝜋 2𝑁 cos 2𝑗+1 𝑣𝜋 2𝑁 Inverse-DCT 𝑓 𝑖,𝑗 = 2 𝑁 𝑢=0 𝑁−1 𝑣=0 𝑁−1 𝐶 𝑢 𝐶 𝑣 𝐹 𝑢,𝑣 cos 2𝑖+1 𝑢𝜋 2𝑁 cos 2𝑗+1 𝑣𝜋 2𝑁 Where 0≤𝑖,𝑗,𝑢,𝑣≤𝑁−1, 𝐶 𝑛 = 1 2 𝑛=0 1 𝑛≠0 For JPEG N=8

DCT bases

Example of DCT Before DCT: -76, -73, -67, -62, -58, -67, -64, -55, -65, -69, -73, -38, -19, -43, -59, -56, -66, -69, -60, -15, 16, -24, -62, -55, -65, -70, -57, -6, 26, -22, -58, -59, -61, -67, -60, -24, -2, -40, -60, -58, -49, -63, -68, -58, -51, -60, -70, -53, -43, -57, -64, -69, -73, -67, -63, -45, -41, -49, -59, -60, -63, -52, -50, -34 After DCT: -415.37, -30.19, -61.20, 27.24, 56.13, -20.10, -2.39, 0.46, 4.47, -21.86, -60.76, 10.25, 13.15, -7.09, -8.54, 4.88, -46.83, 7.37, 77.13, -24.56, -28.91, 9.93, 5.42, -5.65, -48.53, 12.07, 34.10, -14.76, -10.24, 6.30, 1.83, 1.95, 12.13, -6.55, -13.20, -3.95, -1.88, 1.75, -2.79, 3.14, -7.73, 2.91, 2.38, -5.94, -2.38, 0.94, 4.30, 1.85, -1.03, 0.18, 0.42, -2.42, -0.88, -3.02, 4.12, -0.66, -0.17, 0.14, -1.07, -4.19, -1.17, -0.10, 0.50, 1.68,

Quantization 𝐹 ′ 𝑢,𝑣 = 𝐹(𝑢,𝑣) 𝑄(𝑢,𝑣) +0.5 0≤𝑢,𝑣≤7 𝐹 ′ 𝑢,𝑣 = 𝐹(𝑢,𝑣) 𝑄(𝑢,𝑣) +0.5 0≤𝑢,𝑣≤7 16 11 10 24 40 51 61 12 14 19 26 58 60 55 13 57 69 56 17 22 29 87 80 62 18 37 68 109 103 77 35 64 81 104 113 92 49 78 106 121 120 101 72 95 98 112 100 99 17 18 24 47 99 21 26 66 56 Luminance quantization table Chrominance quantization table

Example of Quantization Before Quantization After Quantization -415.37, -30.19, -61.20, 27.24, 56.13, -20.10, -2.39, 0.46, 4.47, -21.86, -60.76, 10.25, 13.15, -7.09, -8.54, 4.88, -46.83, 7.37, 77.13, -24.56, -28.91, 9.93, 5.42, -5.65, -48.53, 12.07, 34.10, -14.76, -10.24, 6.30, 1.83, 1.95, 12.13, -6.55, -13.20, -3.95, -1.88, 1.75, -2.79, 3.14, -7.73, 2.91, 2.38, -5.94, -2.38, 0.94, 4.30, 1.85, -1.03, 0.18, 0.42, -2.42, -0.88, -3.02, 4.12, -0.66, -0.17, 0.14, -1.07, -4.19, -1.17, -0.10, 0.50, 1.68, Quantize by luminance quantization table -26, -3, -6, 2, 2, -1, 0, 0, 0, -2, -4, 1, 1, 0, 0, 0, -3, 1, 5, -1, -1, 0, 0, 0, -3, 1, 2, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

Zigzag Scan -26 -3 -6 2 -1 -2 -4 1 5 Zigzag Scan -2 -4 1 5 Zigzag Scan We get a sequence after the zigzag process: −26, −3, 0, −3, −2, −6, 2, −4, 1 −3,-3, 1, 1, 5, 1, 2, −1, 1, −1, 2, 0, 0, 0, 0, 0, −1, −1, 0, ……,0. The sequence can be expressed as: (0:-26),(0:-3),(1:-3),…,(0:2),(5:-1),(0:-1),EOB Run-Length Encoding

Entropy Coding & Huffman Coding Encode the high/low probability symbols with short/long code length. Symbol Binary Code 00 1 010 2 011 3 100 4 101 … 8 111110 9 1111110 10 11111110 11 111111110 Symbol Binary Code Run Size 1 00 … 10 1111111110000011 6 11110110 15 1111111111111110 EOB 1010 ZRL 1111 DC luminance Huffman Table AC luminance Huffman Table

Flowchart of JPEG2000

For high compression ratio For JPEG 2000, there is no need to divide the image into many 8x8 blocks JPEG both has Strong block effect and blur JPEG-2000 only has blur

Forward Multicomponent Transformation Irreversible component transform (ICT) ICT is used in the lossy compression , which is same as JPEG Reversible component transform (RCT) RCT is used in the lossy and lossless compression Y= R+2G+B 4 C b =B−G C r =R−G

Tiles Size:tile >> block 重點區塊處理(Region of Interest):不同的區域可以挑選不同的壓縮品質

2D-DWT

A rectangular after 2D-DWT

The three stage 2D-DWT 遞進性(Progressive): 解析度隨解碼長度遞增 可適性(Scaling): 編碼內容可於任意位置截斷 當需要高壓縮率 →丟棄後方編碼資料

Inverse DWT

Cohen-Daubechies-Feauveau wavelet (CDF) filter irreversible DWT is the CDF 9/7 wavelet filter reversible DWT is the CDF 5/3 wavelet filter

Quantization for JPEG 2000 , 𝑞 𝑏 𝑢,𝑣 =𝑠𝑖𝑔𝑛 𝑎 𝑏 𝑢,𝑣 ∗𝑓𝑙𝑜𝑜𝑟[ 𝑎 𝑏 (𝑢,𝑣) ∆ 𝑏 ] Step size: ∆ 𝑏 = 2 𝑅 𝑏 − 𝜀 𝑏 (1+ 𝜇 𝑏 2 11 ) R 𝑏 :The nominal dynamic range of subband b 𝜀 𝑏 𝑎𝑛𝑑 𝜇 𝑏 :Adjust the strength of quantization Lossless and lossy quantization can be achieved by different quantization step size For lossless quantization : ∆ 𝑏 =1 when R 𝑏 =𝜀 𝑏 𝑎𝑛𝑑 𝜇 𝑏 =0

Tier-1 Encoder Embedded Block Coding Code-block:32*32 or 64*64 Bit-plane:Bit depth → MSB(高位元) 到 LSB(低位元) Pass:每個位元層都再依「重要性」分為三個分流,分開套用內容統計模型 Pass1:最重要的資料,該處上一層還沒出現過最高有效位元但鄰近處出現者 Pass2:該位置已經出現過最高有效位元,對於較低位元繼續記錄其位元值 Pass3:該處上一層還沒出現過最高有效位元,且鄰近處也都不曾出現過

內容統計模型 (Context modeling) 零編碼(zero coding): 用於分流一、三,紀錄非最高有效位元者。 正負號編碼(sign coding): 用於分流一、三,紀錄出現最高有效位元者。 精細編碼(Magnitude refinement coding): 用於分流二。 遊程編碼(Run-length coding): 用於分流三,紀錄全都不是最高有效位元的狀況。

Tier-1 Encoder 算術編碼(Arithmetic coding) Huffman coding 是將每一筆資料分開編碼 Arithmetic coding 則是將多筆資料一起編碼, 因此壓縮效率比 Huffman coding 更高,近年來的資料壓縮技術大 多使用 arithmetic coding

Arithmetic coding-range encoding

Arithmetic coding-range encoding where C and b are integers (b is as small as possible), then the data X can be encoded by where means that using k-ary (k 進位) and b bits to express C. 0.4375 0.46875 所以編碼的結果為

Rate control and Tier-2 encoder Rate Control: Maintain the minimum distortion for the best image quality with the optimal bitrate to specify the image data size Tier-2 encoder: Packages the output of the Tier-1 encoder into the bit-stream.

Conclusion for JPEG We transfer RGB to YCbCr since the luminance is sensitive to the human eyes We reduce the correlation between pixels by applying DCT to concentrate the energy in DC term We quantize the DCT blocks to reduce the high frequency components (i.e.AC terms). We transfer the 8x8 blocks into sequence for purpose of run-length-coding We encode the sequences by Huffman-coding to minimize code length

Conclusion for JPEG-2000 We transfer RGB to YCbCr by ICT or RCT to choose lossy or lossless compression We perform DWT to split each tile into several subbands to reduce the correlation between pixels We quantize the DWT coefficients by adjusting the quantization step to achieve lossy or lossless compression We encode the quantized DWT coefficients by Tier-1 encoder, Tier-2 encoder and Rate Control with arithmetic coding to get a compressed image.

JPEG 2000 is not as popular as JPEG For JPEG 2000 We have to input the entire image into the memory buffer of hardware. For JPEG It divides the image into several 8x8 blocks during the compression. The cost of memory for JPEG is small. JPEG 2000是基於小波變換的圖像壓縮標準。 JPEG 2000的壓縮比更高,而且不會產生原先的基於離散餘弦變換的JPEG標準產 生的塊狀模糊瑕疵。JPEG 2000同時支持破壞性資料壓縮和非破壞性資料壓縮。 另外,JPEG 2000也支持更複雜的漸進式顯示和下載。  由於JPEG 2000在非破壞性壓縮下仍然能有比較好的壓縮率,所以JPEG 2000在圖 像品質要求比較高的醫學圖像的分析和處理中已經有了一定程度的廣泛應用。

Reference [1] 酒井善則、吉田俊之 共著,白執善 編譯,影像壓縮技術 映像情報符号化, 全華科技圖書股份有限公司, Oct. 2004 [2] Discrete Wavelet Transform for JPEG 2000 [3] Tier 1 and Tier 2 Encoding Techniques for JPEG 2000 [4] WIKIPEDIA, “JPEG”, https://zh.wikipedia.org/wiki/JPEG [5] WIKIPEDIA, “JPEG2000”, https://zh.wikipedia.org/wiki/JPEG_2000

The End