National Central University, Taiwan

Slides:



Advertisements
Similar presentations
IM426 – BUSINESS CASE 6: SOCIAL SENTIMENTAL ANALYSIS 社群情感分析 Original case source & reference: Rainer, Kelly, Prince, Brad and Watson, Hugh, Management.
Advertisements

MMN Lab 未來教室與雲端化學習 Yueh-Min Huang Department of Engineering Science, National Cheng Kung University, Tainan, Taiwan
黄国文 中山大学 通用型英语人才培养中的 语言学教学 黄国文 中山大学
Did You Know III 你知道吗?(III)
資訊科技挑戰獎勵計劃 樂善堂梁銶琚學校 6A(06)陳芷蘊 中華白海豚. 資訊科技挑戰獎勵計劃 樂善堂梁銶琚學校 6A(06)陳芷蘊 中華白海豚.
专题八 书面表达.
He said: What is a team? Team is not to let the other person failed, and do not let any team member fail!
Chapter 29 English Learning Strategy Of High School Students
真题重现:广东高考中的不定式。 1 (2008年高考题)For example, the proverb,“ plucking up a crop _________(help) it grow ,” is based on the following story… 2 (2007年高考题)While.
新课程理念下英语教学应当走出的几个误区 人民教育出版社中学英语室 张献臣.
大学英语四级作文.
國立中山大學 新進教師研習會 專題演講 主動建構的學習教學觀 及其應用示例   陳忠志 輔英科技大學 科教中心     民國96年9月15日.
统计学习基础 卿来云 中国科学院研究生院信息学院 / 统计对研究的意义:
深層學習 暑期訓練 (2017).
one Counting units 2 ones 3 ones.
Ⅱ、从方框里选择合适的单词填空,使句子完整通顺。 [ size beef special large yet ]
優質教育基金研究計劃研討會: 經驗分享 - 透過Web 2.0推動高小程度 探究式專題研習的協作教學模式
学练优英语教学课件 八年级(上) it! for Go
計算方法設計與分析 Design and Analysis of Algorithms 唐傳義
植生工程植材選用決策支援系統 指導:錢滄海 授課:林俐玲 學生:楊孟叡.
人工智能师资培训:TensorFlow要点
Source: IEEE Access, vol. 5, pp , October 2017
Knowledge Engineering & Artificial Intelligence Lab (知識工程與人工智慧)
Decision Support System (靜宜資管楊子青)
1 Introduction Prof. Lin-Shan Lee TA: Chun-Hsuan Wang.
1 Introduction Prof. Lin-Shan Lee.
文字探勘與知識工程 Text Mining & Knowledge Engineering
An Introduction to Computer Science (計算機概論)
Cross cultural communication in college english
Summer English and Data Science
Advanced Artificial Intelligence
Teen Challenge Core Values
Data Mining 資料探勘 Introduction to Data Mining Min-Yuh Day 戴敏育
Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi
信息产业导论期末汇报 汇报人:刁梦鸽 学号: 时间:2012年5月31日.
如何利用教学资源库 提高师生的信息素养 How to Utilize the Teaching Resource Library
A Study on the Next Generation Automatic Speech Recognition -- Phase 2
Decision Support System (靜宜資管楊子青)
基于课程标准的校本课程教学研究 乐清中学 赵海霞.
近期科研汇报 报告人: 纪爱兵.
Connecting Education and Career through Learning
1 Introduction Prof. Lin-Shan Lee.
資料結構 Data Structures Fall 2006, 95學年第一學期 Instructor : 陳宗正.
Internet-based exercise
Research 裴澍炜 Shuwei Pei Tel:
Total Review of Data Structures
「導論」教學實施規劃 吳正己 國立台灣師範大學 資訊教育研究所.
虚 拟 仪 器 virtual instrument
-----Reading: ZhongGuanCun
Presentation 约翰316演示 John 3 : 16
IEEE Computer Society 長亨文化事業有限公司.
R與資料探勘(data mining)簡介
The viewpoint (culture) [观点(文化)]
Sun-Star第六届全国青少年英语口语大赛 全国总决赛 2015年2月 北京
Statistics Chapter 1 Introduction Instructor: Yanzhi Wang.
Introduction to Probability Theory ‧1‧
李宏毅專題 Track A, B, C 的時間、地點開學前通知
Introduction of this course
主 宾 表 定 状 补 不定式 √ 动名词 分 词.
(二)盲信号分离.
Sun-Star第六届全国青少年英语口语大赛 全国总决赛 2015年2月 北京
An Quick Introduction to R and its Application for Bioinformatics
More About Auto-encoder
Speaker : YI-CHENG HUNG
國立東華大學課程設計與潛能開發學系張德勝
古佳怡 AI 人工智慧.
WiFi is a powerful sensing medium
Gaussian Process Ruohua Shi Meeting
適用於數位典藏多媒體內容之 複合式多媒體檢索技術
《神经网络与深度学习》 第10章 模型独立的学习方式
Presentation transcript:

National Central University, Taiwan Machine Learning Give a man a fish, and you feed him for a day; teach him how to fish, and you feed him for a lifetime. Give a computer (machine) a program, and you make it useful for a time; teach it how to program, and you make it useful for a lifetime. Prof. Jehn-Ruey Jiang National Central University, Taiwan 給他魚吃不如教他釣魚 Give a man (computer) a fish (program), and you feed him for a day; teach him how to fish (program), and you feed him for a lifetime.

A Few Quotes “A breakthrough in machine learning would be worth ten Microsofts” (Bill Gates, Chairman, Microsoft) “Machine learning is the next Internet” (Tony Tether, Director, DARPA) Machine learning is the hot new thing” (John Hennessy, President, Stanford) “Web rankings today are mostly a matter of machine learning” (Prabhakar Raghavan, Dir. Research, Yahoo) “Machine learning is going to result in a real revolution” (Greg Papadopoulos, CTO, Sun) Source: Slides of Dr. Pedro Domingos

So What Is Machine Learning? Wiki: Machine learning is a field of computer science that gives computers the ability to learn without being explicitly programmed. Arthur Samuel, an American pioneer in the field of computer gaming and artificial intelligence, coined the term "Machine Learning" in 1959 while at IBM. (Arthur Samuel said in 1959: “How can computers learn to solve problems without being explicitly programmed?”)

So What Is Machine Learning? Pedro Domingos: Getting computers to program themselves Let the data do the work instead! Yi-Fan Chang: A branch of artificial intelligence, concerned with the design and development of algorithms that allow computers to evolve behaviors based on empirical data. As intelligence requires knowledge, it is necessary for the computers to acquire knowledge.

Traditional Programming Machine Learning Computer Data Output Program Computer Data Program Output Source: Slides of Dr. Pedro Domingos

COMMENT: from林志傑,網路上常用的名字是 Fukuball 從人的學習轉換到機器學習 人學習是為了習得一種技能,比如學習辨認男生或女生,而我們可以從觀察中累積經驗而學會辨認男生或女生,這就是人學習的過程,觀察 -> 累積經驗、學習 -> 習得技能;而機器怎麼學習呢?其實有點相似,機器為了學習一種技能,比如一樣是學習辨認男生或女生,電腦可以從觀察資料及計算累積模型而學會辨認男生或女生,這就是機器學習的過程,資料 -> 計算、學習出模型 -> 習得技能。 Source: Slides of Dr. Hsuan-Tien Lin

在機器學習上,技能就是透過計算所搜集到的資料來提升一些可量測的性能,比如預測得更準確,實例上像是我們可以搜集股票的交易資料,然後透過機器學習的計算及預測後,是否可以得到更多的投資報酬。如果可以增加預測的準確度,那麼我們就可以說電腦透過機器學習得到了預測股票買賣的技能了。 Source: Slides of Dr. Hsuan-Tien Lin

Sample ML Applications Go games Pattern (image, voice, etc.) recognition Computational biology Finance E-commerce Space exploration Robotics Information extraction ….

Magic? No, more like gardening Seeds = ML Algorithms Nutrients = Data Gardener = You (Trainer) Plants = Programs (Model) Source: Slides of Dr. Pedro Domingos

Sample Applications Web search Computational biology Finance E-commerce Space exploration Robotics Information extraction Social networks …. Source: Slides of Dr. Pedro Domingos

ML in a Nutshell Tens of thousands of machine learning algorithms Hundreds new every year Every machine learning algorithm has three components: Representation Evaluation Optimization Source: Slides of Dr. Pedro Domingos

Representation Decision trees (forest) Graphical models (Bayes/Markov nets) Support vector machines Neural networks … Source: Slides of Dr. Pedro Domingos

Evaluation Squared error Accuracy Precision and recall Likelihood Posterior probability Cost / Utility Entropy K-L divergence …

Optimization Convex optimization Combinatorial optimization E.g.: Gradient descent Combinatorial optimization E.g.: Greedy search Constrained optimization E.g.: Linear programming

Types of Machine Learning Supervised (inductive) learning Training data includes desired outputs Unsupervised learning Training data does not include desired outputs Semi-supervised learning Training data includes a few desired outputs Reinforcement learning Rewards from sequence of actions

Term Project: Hello, Digit! Goal: To train a deep learning model to recognized hand-written digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) of Mnist dataset by using Google TensorFlow python package, so that the model can recognize your own hand-written digits. Background knowledge: Deep Learning (DNN)

Term Project Preliminaries Deep Learning Background Knowledge DNN MLP RNN CNN Tools and Data Mnist Tortoise GIt Anadconda (Python Language) Jupiter Notebook Theano or Keras + TensorFlow

Q&A