数模转换与模数转换的应用 电工电子实验教学中心.

Slides:



Advertisements
Similar presentations
自动化学院应用电子教学中心 1 第七章 数 / 模和模 / 数转换器 数字电路与 系统设计. 自动化学院应用电子教学中心 2 第七章 模 / 数和数 / 模转换器 7.1 概述 7.2 D/A 转换器 7.3 A/D 转换器.
Advertisements

假设D3、D2、D1、D0全为1,则BS3、BS2、BS1、BS0全部与“1”端相连。根据电流定律,有:
第10章 模/数和数/模转换 10.1 概述 10.2 模/数与数/模转换通道的组成 10.3 模/数与数/模转换器的主要技术指标
第18章 模拟量和数字量的转换.
第六章 数/模(D/A)及模/数(A/D)转换
9.2 D/A转换 §9.2 D/A转换 DAC转换的基本原理: 图9.2.1 数模转换器示意图 《数字电子技术》
绪论:LabVIEW控制简介 复旦大学物理教学实验中心 phylab.fudan.edu.cn.
实验四 利用中规模芯片设计时序电路(二).
第7章 模拟量输入输出接口 西安交通大学计算机系 桂小林 2017年3月18日.
第九章 数-模和模-数转换 第九章 数-模和模-数转换 9.1 概述 9.3 A/D转换 9.2 D/A转换 《数字电子技术》
5.4 顺序脉冲发生器、 三态逻辑和微机总线接口 顺序脉冲发生器 顺序脉冲 计数型 分类 移位型.
第七讲 数字集成电路及应用 集成编码器 编码器的逻辑功能是将加在电路若干个输入端中的某一个输入端的信号变换成相应的一组二进制代码输出。常用的编码器集成电路有8/3线优先编码器和10/4线优先编码器等器件。 图4.5.1(a)是8/3线优先编码器74LS148的管脚排列图。I0~I7是输入信号输入端,输入8个信号,低电平有效。C、B、A为三输出端,可组成8组二进制码输出,且为反码输出。在I0~I7输入端中,优先权排列顺序为I7(最高)……I0(最低)。74LS148编码器的真值表如表4-1所示。
第八章 数/模与模/数转换 8.1 概 述 8.2 D / A转换器 8.3 A / D 转换器.
第2期 第1讲 电源设计 电子科技大学.
Roy Wan PCI MS/s 14-bit 高速数字化仪 Roy Wan
第7章 模/数和数/模转换电路 7.1 模/数转换电路 7.2 数/模转换电路.
第12章 模拟量和数字量的转换 12.1 D/A转换器 12.2 A/D转换器.
第7章 数/模和模/数转换 本章小结 7.2 A/D转换 返回 A/D转换器的工作原理 A/D转换器的构成
第10章 AT89S52单片机与DAC、 ADC的接口 1.
第七章 D/A转换器和A/D转换器 第一节 D/A和A/D转换的基本原理 第二节 D/A转换器 第三节 A/D转换器 小结.
现代电子技术实验 4.11 RC带通滤波器的设计与测试.
单片机应用技术 项目三 智能温控装置 第1讲 温度检测子项目 《单片机应用技术》精品课程组 湖北职业技术学院机电工程系.
概述 一、数/模和模/数器是模拟、数字系统间的桥梁 数 / 模(D / A)转换:
 与非门参数测试与组合逻辑电路设计  集成触发器  计数、译码、显示电路
电工电子实验教学中心 晶体管单级共射放大电路 仿真与实践 主讲:许忠仁.
译码器及其应用 知识回顾 模拟信号与数字信号 电子电路中的信号 模拟信号 数字信号 幅度随时间连续变化 的信号
实验四 组合逻辑电路的设计与测试 一.实验目的 1.掌握组合逻辑电路的设计 方法 2.学会对组合逻辑电路的测 试方法.
第9章 数/模与模/数转换 9.1 概述 9.2 D / A转换器(DAC) 9.3 A / D 转换器(ADC)
时序逻辑电路实验 一、 实验目的 1.熟悉集成计数器的功能和使用方法; 2.利用集成计数器设计任意进制计数器。 二、实验原理
实验六 积分器、微分器.
本 章 重 点 D/A转换器0832 A/D转换器0809 单片机与D/A和A/D转换器的应用 课时安排:2个课时.
§5-4 数/模转换电路(DAC) 学习要点: D/A转换电路原理 倒T型电阻网络D/A.
第二章 双极型晶体三极管(BJT).
确定运放工作区的方法:判断电路中有无负反馈。
第6章 第6章 直流稳压电源 概述 6.1 单相桥式整流电路 6.2 滤波电路 6.3 串联型稳压电路 上页 下页 返回.
第四章 MCS-51定时器/计数器 一、定时器结构 1.定时器结构框图
10.2 串联反馈式稳压电路 稳压电源质量指标 串联反馈式稳压电路工作原理 三端集成稳压器
第 8 章 数模和模数转换器 概 述 D/A 转换器 A/D 转换器 本章小结.
集成运算放大器 CF101 CF702 CF709 CF741 CF748 CF324 CF358 OP07 CF3130 CF347
8.3 A/D转换器及接口技术 A/D转换器概述 在大规模集成电路高速发展的今天,由于计算机控制技术在工程领域内的广泛应用,A/D转换器在应用系统中占据着重要的地位。为了满足各种不同的检测及控制任务的需要,大量结构不同,性能各异的A/D转换电路应运而生。尽管A/D转换器的种类繁多,但目前广泛使用的还是逐次比较式和双积分式。
晶体管及其小信号放大 -单管共射电路的频率特性.
本章的重点: 本章的难点: 第九章 数模和模数转换 1.D/A转换器的基本工作原理(包括双极性输出),输入与输出关系的定量计算;
晶体管及其小信号放大 -单管共射电路的频率特性.
四川工商学院 单片机原理及应用 刘 强
第8章 A/D转换与D/A转换 教学内容 A/D与D/A转换 单片机扩展I2C总线 A/D与D/A转换器PCF8591.
内容简介 8.1 概述 8.2 数/模转换电路(DAC) 8.3 模/数转换电路(ADC) 第8章 数/摸转换和模/数转换 重点:
组合逻辑电路 ——中规模组合逻辑集成电路.
实验三 16位算术逻辑运算实验 不带进位控制的算术运算 置AR=1: 设置开关CN 1 不带进位 0 带进位运算;
实验二 射极跟随器 图2-2 射极跟随器实验电路.
长春理工大学 电工电子实验教学中心 数字电路实验 数字电路实验室.
实验二 带进位控制8位算术逻辑运算实验 带进位控制8位算术逻辑运算: ① 带进位运算 ② 保存运算后产生进位
MAX——PLUSⅡ 图形化程序设计 ——数字电子钟的设计 (二十四小时六十分钟六十秒)
《数字电子技术基础》(第五版)教学课件 清华大学 阎石 王红
实验五 MSI组合逻辑功 能部件的应用与测试
HSC高速输出例程 HORNER APG.
电路原理教程 (远程教学课件) 浙江大学电气工程学院.
第4章 触发器.
调幅与检波的研究 实验目的 实验原理 实验内容 注意事项.
确定运放工作区的方法:判断电路中有无负反馈。
实验一 单级放大电路 一、 实验内容 1. 熟悉电子元件及实验箱 2. 掌握放大器静态工作点模拟电路调试方法及对放大器性能的影响
现代电子技术实验 同步计数器及其应用研究 实验目的 实验原理 实验内容 注意事项.
单片机应用技术 (C语言版) 第10章 单片机测控接口
信号发生电路 -非正弦波发生电路.
电工电子技术实验 电工电子教学部.
B12 竺越
第12章 555定时器及其应用 一. 555定时器的结构及工作原理 1. 分压器:由三个等值电阻构成
第 10 章 运算放大器 10.1 运算放大器简单介绍 10.2 放大电路中的负反馈 10.3 运算放大器在信号运算方面的应用
9.6.2 互补对称放大电路 1. 无输出变压器(OTL)的互补对称放大电路 +UCC
数字电子技术 项目5 简易数字电压表的设计与测试
《微型计算机原理与接口技术》 第4版 王良 宁德师范学院 吴宁 乔亚男 编著 清华大学出版社 出版
Presentation transcript:

数模转换与模数转换的应用 电工电子实验教学中心

目 录 一、概述 二、DAC 三、ADC 四、常用DAC 五、综合实验设计

一、概述 1.概念及其应用 2.主要技术指标 模拟 控制 被测被控对象 传感 器 A/D 计算 机 D/A 图1 典型的数字控制系统框图 图1 典型的数字控制系统框图 2.主要技术指标 (1)精度:用分辨率、转换误差表示 (2)速度:用转换时间、转换速率表示

二、 DAC 1.DAC的基本原理 数码 寄存器 模拟 开关 译码 网络 求和 放大器 D uA 参考电源 UREF 图2 DAC方框图

uA 6 4 2 1111 1101 1011 1001 0010 0100 0110 1110 1100 1010 0001 0011 0101 0111 D -2 -4 -6 图3 D和uA的关系图

2.倒T型R-2R电阻网络DAC (1)构成 电阻网络、双向电子模拟开关、求和放大器、数码寄存器、参考电源 (2)工作原理 通常取 Rf=R,则:

图4 倒T型R-2R电阻网络D/A转换电路

3.DAC的主要参数 满量程电压值: (1)分辨率 输入变化1LSB时,输出端产生的电压变化。 LSB:Least Significant Bit MSB:Most Significant Bit a. 用输出的电压(电流)值表示

b. 用百分比表示 c. 用位数n表示 (2)转换误差 a. 绝对误差:实际值与理想值之间的差值。 b. 相对误差:绝对误差与满量程的比值。

从输入的数字量发生突变开始,直到输出电压进入与稳态值相差±½LSB范围以内的这段时间。 (3)建立时间tset 从输入的数字量发生突变开始,直到输出电压进入与稳态值相差±½LSB范围以内的这段时间。 tset ±½LSB uO t

三、ADC 1.模数转换的一般过程 (1)采样和保持 (2)量化与编码 量化电平(离散电平) :都是某个最小单位(量化单位△)的整数倍的电平。 ①舍尾方法 ②四舍五入方法

u1(t) O t (a)模拟输入信号

O t ( b′)采样信号

O t (b)采样输出信号

uO(t) O t (c)采样保持信号 图5 模拟信号的采样保持

采样—保持信号uO 量化电平uq … …

采样—保持信号uO 量化电平uq … …

2.逐次逼近式ADC (1)组成 电压比较器、D/A转换器、时序分配器、JKFF、寄存器 2.工作原理 先使JKFF的最高位为1,其余低位为0,比较,下一CP有效沿到,决定1的去留; 再使JKFF的次高位为1,其余低位为0,比较,下一CP有效沿到,决定1的去留;

3.ADC的主要参数 直到最低位比较完为止。此时JKFF中所存的数码就是所求的输出数字量。 转换位数为N,则转换时间为(N+1)Tcp。 (1)分辨率:所能分辨的输入模拟量的最小值。 a. 用输入的电压(电流)值表示

图6 4位逐次逼近型A/D转换器结构图

CP CP0 CP1 CP2 CP3 CP4 图7 时序分配器输出波形

b. 用百分比表示 c. 用位数n表示 (2)转换误差 a.绝对误差 : 与输出数字量对应的理论模拟值与产生该数字量的实际输入模拟值之间的差值

b.相对误差 : 绝对误差与额定最大输入模拟值(FSR)的比值,通常用百分数表示。 (3)转换时间和转换速率

四、常用D/A转换器 1、八位D/A转换器DAC0830/0831/0832系列 美国National Semiconduct (NSC)公司DAC系列:八位、十位、十二位三种。采用CMOS/Si(硅)-Cr(铬)工艺和倒梯形电阻网络。 1、八位D/A转换器DAC0830/0831/0832系列 管脚图及引脚功能:

电源 片选 输入锁 存允许 写入1 模拟地 写入2 转移 控制 数字 输入 数字输入 参考电压 电流输出2 反馈 电阻 数字地 电流输出1

内部框图 8位输入寄存器 8位D/A转换器

2、应用提示 所有不用的数字输入端应连到VCC或地,如果悬浮,则将该引脚作为逻辑“1”处理。 单极性输出

五、综合实验(D/A转换电路P222) 1、实验课题:设计一个可编程波形发生器 技术指标: 开关K2K1=01时,输出正斜率锯齿波。 输出锯齿波时f=1kHz;输出三角波时f=0.5kHz. 输出正负斜率锯齿波上升或下降的台阶数大于或等于16。 输出幅度V0在0V至2V间可调。 电源电压为±5V。

输出波形示意图

2、设计提示 组成框图:

所用器件: DAC0832 一片 LM324 一片 74393 一片 7486 一片 7400 一片 时钟可由数字实验箱提供

由DAC0832完成。因16个台阶,可用4位二进制数。根据输出电压选定数字输入端。 输出电压计算公式: 单元电路设计 D/A转换: 由DAC0832完成。因16个台阶,可用4位二进制数。根据输出电压选定数字输入端。  输出电压计算公式: 其中:VREF参考电压,Dn是二进制数转换为等值的十进制数。4位二进制数接在不同的数字输入端,转换的Dn值不同,输出电压也就不同。例:输入的二进制数为“1111”,当接在D0~D3端时,Dn=23+22+21+20=15,若VREF为5V时,V0=-(5/256)*15=-0.29V; 接D3~D6端时,Dn=26+25+24+23=120,V0=-2.34V(输出电压也不能太大,要考虑运放的饱和失真)

输出幅度受到运放动态范围的限制。 LM324运放的输出是一个对管,负载是有源负载,上饱和区为1.5V,下饱和区为1.5V,其动态范围为+3.5V~-3.5V。

输出电路: 由LM324完成。考虑输出电压可从0V调到2V。 计数器: 为数模转换器提供4位二进制数,M=16。由74393完成。下降沿触发。 波形控制电路: 在开关K2K1的控制下,实现三种不同波形的输出。 当K2K1=01时,转换器输入的二进制数为0000~1111为加法计数; 当K2K1=10时,转换器输入的二进制数为1111~0000为减法计数; 当K2K1=11时,转换器先输入0000~1111,再输入1111~0000。 由7486异或门实现,为实现加法计数(正斜率波形),计数器输出与“0”异或;减法计数(负斜率波形),与“1”异或;为实现先加后减(三角波)则通过组合电路,使其先加后减。整个控制电路由7486、7400、74393中另一个计数器完成。

波形控制及转换电路图

由题意可知:三角波的频率为正负斜率锯齿波的1/2。显然可由模32计数器来实现。 K1K2=11时: 计数0-15为加法计数,正斜率锯齿波 计数16-31为减法计数,负斜率锯齿波。 模32计数器可由模16计数器×模2计数器来实现。

         计数器输出波形  开关控制电路真值表:           加与异或门的信号: 

时钟: 由实验箱提供。为满足输出信号频率正负斜率锯齿波为1kHz,三角波为0.5kHz,时钟频率应为16kHz。