数字滤波器结构 DF (Digital Filter)

Slides:



Advertisements
Similar presentations
1 Lecture 5 Properties of LTI Systems The Solution of LCCDE.
Advertisements

高考英语阅读分析 —— 七选五. 题型解读: 试题模式: 给出一篇缺少 5 个句子的文章, 对应有七个选项,要求同学们根据文章结构、 内容,选出正确的句子,填入相应的空白处。 考查重点: 主要考查考生对文章的整体内容 和结构以及上下文逻辑意义的理解和掌握。 (考试说明) 选项特点: 主旨概括句(文章整体内容)
國立交通大學應用數學系 數學建模與科學計算研究所 簡 介. 隨著科技的日新月異,人類為追求完美的生活,其 所面臨的科學與工程問題也日趨複雜,舉凡天氣的 預測、飛機的設計、生物醫學中的神經網路、奈米 材料的研發、衍生性金融產品的定價、甚至交通流 量的監測等問題,透過「數學建模」的量化過程, 再配合以「科學計算」的方式去模擬現象並嘗試尋.
Final Review Chapter 1 Discrete-time signal and system 1. 模拟信号数字化过程的原理框图 使用 ADC 变换器对连续信号进行采样的过程 使用 ADC 变换器对连续信号进行采样的过程 x(t) Analog.
胸痛中心的时间流程管理 上海胸科医院 方唯一.
2014 年上学期 湖南长郡卫星远程学校 制作 13 Getting news from the Internet.
-CHINESE TIME (中文时间): Free Response idea: 你周末做了什么?
破舊立新(三) 人生召命的更新 使徒行傳廿六章19-23節.
數位訊號處理 第4章 離散時間訊號與LTI系統之傅利葉分析
雅思大作文的结构 Presented by: 总统秘书王富贵.
Chapter 8 Liner Regression and Correlation 第八章 直线回归和相关
摘要的开头: The passage mainly tells us sth.
XI. Hilbert Huang Transform (HHT)
深層學習 暑期訓練 (2017).
Signals and Systems Lecture 28
AN INTRODUCTION TO OFDM
IV. Implementation IV-A Method 1: Direct Implementation 以 STFT 為例
Applications of Digital Signal Processing
Population proportion and sample proportion
模式识别 Pattern Recognition
Good Afternoon. 威世智中国员工及 组织化赛事介绍 WotC China Staff and Organized Play Instruction Shane Xu
INFINITE IMPULSE RESPONSE FILTER
Acoustic规范和测试 Base Band 瞿雪丽 2002/1/30.
第五章 数字滤波器设计 Filtering Beijing Institute of Technology 数字信号处理.
Creating Animated Apps (I) 靜宜大學資管系 楊子青
第 三章 无限长单位脉冲响应(IIR)滤波器 的设计方法(共10学时 )
HOW TO ACE -- THE IELTS SPEAKING TEST
Fundamentals of Physics 8/e 27 - Circuit Theory
Digital Terrain Modeling
Decision Support System (靜宜資管楊子青)
HLA - Time Management 陳昱豪.
6.5 数字高通、带通和带阻滤波器的设计.
信号与图像处理基础 An Introduction to Signal and Image Processing 中国科学技术大学 自动化系
创建型设计模式.
组合逻辑3 Combinational Logic
製程能力分析 何正斌 教授 國立屏東科技大學工業管理學系.
冠词的特殊位置(续).
聲轉電信號.
Interval Estimation區間估計
变频器和滤波器 分类和应用.
Lesson 44:Popular Sayings
Decision Support System (靜宜資管楊子青)
第十五课:在医院看病.
Advanced Digital Signal Processing 高等數位訊號處理
Chp.4 The Discount Factor
Version Control System Based DSNs
XIV. Orthogonal Transform and Multiplexing
高性能计算与天文技术联合实验室 智能与计算学部 天津大学
交流阻抗的量測與分析 交流阻抗 (AC Impedance) 電阻的阻抗 Z=R 電容的阻抗 電感的阻抗 Z〞 ω變大 R Z′
Chp.4 The Discount Factor
BORROWING SUBTRACTION WITHIN 20
Supply Chain Management
準確性(Accuracy) 誤差種類 儀器準確度 時間因素 儀器參數.
中国科学技术大学计算机系 陈香兰 2013Fall 第七讲 存储器管理 中国科学技术大学计算机系 陈香兰 2013Fall.
虚 拟 仪 器 virtual instrument
中国科学技术大学计算机系 陈香兰 Fall 2013 第三讲 线程 中国科学技术大学计算机系 陈香兰 Fall 2013.
Common Qs Regarding Earnings
Unit 7 Lesson 20 九中分校 刘秀芬.
中考英语阅读理解 完成句子命题与备考 宝鸡市教育局教研室 任军利
Chp.4 The Discount Factor
第4章 连续时间傅立叶变换 The Continuous-Time Fourier Transform
实验一 熟悉MATLAB环境 常用离散时间信号的仿真.
李宏毅專題 Track A, B, C 的時間、地點開學前通知
磁共振原理的临床应用.
§7.3 离散时间系统的数学 模型—差分方程 线性时不变离散系统 由微分方程导出差分方程 由系统框图写差分方程 差分方程的特点.
本講義為使用「訊號與系統,王小川編寫,全華圖書公司出版」之輔助教材
健康按摩法 請開音樂.
Principle and application of optical information technology
Gyrophone: Recognizing Speech From Gyroscope Signals
Gaussian Process Ruohua Shi Meeting
Presentation transcript:

数字滤波器结构 DF (Digital Filter)

一、什么是数字滤波器 顾名思义:其作用是对输入信号起到滤波的作用;即DF是由差分方程描述的一类特殊的离散时间系统。 它的功能:把输入序列通过一定的运算变换成输出序列。不同的运算处理方法决定了滤波器的实现结构的不同。

数字滤波器介绍 Digital filters are used for two general purposes: (1) separation of signals that have been combined, (2) restoration of signals that have been distorted in some way. signal separation and signal restoration Signal separation is needed when a signal has been contaminated with interference, noise, or other signals.  Signal restoration is used when a signal has been distorted in some way. audio recording made with poor equipment may be filtered to better represent the sound as it actually occurred.

研究DF实现结构意义 1.滤波器的基本特性(如有限长冲激响应FIR与无限长冲激响应IIR)决定了结构上有不同的特点。 2.不同结构所需的存储单元及乘法次数不同,前者影响复杂性,后者影响运算速度。 3.有限精度(有限字长)实现情况下,不同运算结构的误差及稳定性不同。 4.好的滤波器结构应该易于控制滤波器性能,适合于模块化实现,便于时分复用。

二、数字滤波器的工作原理 x(n) y(n) h(n) 则LTI系统的输出为:

三、数字滤波器表示方法 有两 种表示方法:方框图表示法;流图表示法. 数字滤波器中,信号只有延时,乘以常数和相加三种运算。 所以DF结构中有三个基本运算单元:加法器,单位延时,乘常数的乘法器。

1、方框图、流图表示法 方框图表示法: 信号流图表示法: 单位延时 系数乘 相加 a a Z-1 Z-1 把上述三个基本单元互联,可构成不同数字网络或运算结构,也有方框图表示法和流图表示法。

2.例子 例:二阶数字滤波器: 其方框图及流图结构如下: b0 b0 y(n) x(n) y(n) x(n) a1 Z-1 a1 Z-1 看出:可通过流图或方框图看出系统的运算步骤和运算结构。 以后我们用流图来分析数字滤波器结构。DF网络结构或DF运算结构二个术语有微小的差别,但大抵一样,可以混用。

四、数字滤波器的分类 滤波器的种类很多,分类方法也不同。 1.从功能上分;低、带、高、带阻。 2.从实现方法上分:FIR、IIR 3.从设计方法上来分:Chebyshev(切比雪夫),Butterworth(巴特沃斯) 4.从处理信号分:经典滤波器、现代滤波器 等等。

1、经典滤波器 假定输入信号x(n)中的有用成分和希望去除的成分,各自占有不同的频带。当x(n)经过一个线性系统(即滤波器)后即可将欲去除的成分有效地去除。但如果信号和噪声的频谱相互重叠,那么经典滤波器将无能为力。 |H(ejw)| |Y(ejw)| |X(ejw)| 无用 有用 wc w wc wc w

2.现代滤波器 它主要研究内容是从含有噪声的数据记录(又称时间序列)中估计出信号的某些特征或信号本身。一旦信号被估计出,那么估计出的信号将比原信号会有高的信噪比。 现代滤波器把信号和噪声都视为随机信号,利用它们的统计特征(如自相关函数、功率谱等)导出一套最佳估值算法,然后用硬件或软件予以实现。 现代滤波器理论源于维纳在40年代及其以后的工作,这一类滤波器的代表为:维纳滤波器,此外,还有卡尔曼滤波器、线性预测器、自适应滤波器。 本课程主要讲经典滤波器,外带一点卡尔曼滤波器.

3.模拟滤波器和数字滤波器 经典滤波器从功能上分又可分为: 低通滤波器(LPAF/LPDF):Low pass analog filter 带通滤波器(BPAF/BPDF):Bandpass analog filter 高通滤波器(HPAF/HPDF):High pass analog filter 带阻滤波器(BSAF/BSDF):Bandstop analog filter 即它们每一种又可分为:数字(Digital)和模拟(Analog)滤波器。

4.模拟滤波器的理想幅频特性 LPAF HPAF BPAF BSAF

5.数字滤波器的理想幅频特性 LPDF HPDF BPDF BSDF ……. ……. ……. …….

Analog filters and digital filters Analog filters are cheap, fast, and have a large dynamic range in both amplitude and frequency. Digital filters, in comparison, are vastly superior in the level of performance that can be achieved. With analog filters, the emphasis is on handling limitations of the electronics, such as the accuracy and stability of the resistors and capacitors. digital filters are so good that the performance of the filter is frequently ignored. The emphasis shifts to the limitations of the signals, and the theoretical issues regarding their processing

linear filter has an impulse response, a stepresponse and a frequency response. Each of these responses contains complete information about the filter, but in a different form. The most straightforward way to implement a digital filter is by convolving the input signal with the digital filter's impulse response. another way to make digital filters, called recursion.

Recursive filters: using previously calculated values from the output, besides points from the input. Instead of using a filter kernel, recursive filters are defined by a set of recursion coefficients. recursive filters are also called Infinite Impulse Response or IIR filters. In comparison, filters carried out by convolution are called Finite Impulse Response or FIR filters.

Time Domain Parameters Three parameters are important: (1) transition speed (risetime), shown in (a) and (b) (2) overshoot, shown in (c) and (d), (3) phase linearity (symmetry between the top and bottom halves of the step), shown in (e) and (f). the risetime (more jargon) is to quote the number of samples between the 10% and 90% amplitude levels. There are many reasons, noise reduction, inherent limitations of the data acquisition system, avoiding aliasing, etc.

overshoot in the step response overshoot in the step response. Overshoot must generally be eliminated because it changes the amplitude of samples in the signal

the upper half of the step response be symmetrical with the lower half, as illustrated in (e) and (f). This symmetry is needed to make the rising edges look the same as the falling edges. This symmetry is called linear phase,

Frequency domain filters The passband refers to those frequencies that are passed, while the stopband contains those frequencies that are blocked. The transition band is between.

cutoff frequency The division between the passband and transition band is called the cutoff frequency. In analog filter design,the cutoff frequency is usually defined to be where the amplitude is reducedto 0.707 (i.e., -3dB). Digital filters are less standardized, and it is common to see 99%, 90%, 70.7%, and 50% amplitude levels defined to be the cutoff frequency.

Frequency Domain Parameters roll-off ripple stopband attenuation

A fast roll-off means that the transition band is very narrow.

Passband frequencies to move through the filter unaltered, there must be no passband ripple,

stopband attenuation to adequately block the stopband frequencies, it is necessary to have good stopband attenuation, displayed in (e) and (f).

A high-pass filter kernel, (c), is formed by changing the sign of each sample in (a), and adding one to the sample at the center of symmetry. This action in the time domain inverts the frequency spectrum

The high-pass filter kernel, (c), is formed by changing the sign of every other sample in (a). As shown in (d), this flips the frequency domain left-for-right: 0 becomes 0.5 and 0.5 to 0

Moving Average Filters The moving average is the most common filter in DSP, mainly because it is the easiest digital filter to understand and use. In spite of its simplicity, the moving average filter is optimal for a common task: reducing random noise while retaining a sharp step response.

the moving average is the worst filter for frequency domain encoded signals, with little ability to separate one band of frequencies from another. Relatives of the moving average filter include the Gaussian, Blackman, and multiplepass moving average.

Frequency Response The roll-off is very slow and the stopband attenuation is ghastly. Clearly, the moving average filter cannot separate one band of frequencies from another. Remember, good performance in the time domain results in poor performance in the frequency domain, and vice versa. In short, the moving average is an exceptionally good smoothing filter (the action in the time domain), but an exceptionally bad low-pass filter (the action in the frequency domain).

Recursive Implementation