/8088指令系统 为便于理解指令的形式和功能, 对指令中操作数符号的约定如下: 大小写字母无区别

Slides:



Advertisements
Similar presentations
输入输出程序设计 输入输出的基本概念 无条件方式输入输出 查询方式输入输出 中断方式输入输出.
Advertisements

微型计算机技术 教 学 指 导(七) 太原广播电视大学 郭建勇.
第10章 DOS功能调用与BIOS中断调用.
第7章 8086/8088汇编语言程序设计 7.1 引言 7.2 顺序程序设计 7.3 分支结构程序设计 7.4 循环结构程序设计
输入/输出及接口 输入/输出的传送方式 中断技术 80x86/Pentium中断系统 8259A可编程中断控制器 中断程序设计
本周实验安排 实验内容:(P231)人名排序的例子。
第3章 80x86汇编语言程序设计(中) 时间不够的情况下只讲16位汇编.
第三章 80 x86的指令系统和寻址方式 3.1 指令概述 x86的寻址方式 ( ※ ) 3.3 程序占有的空间和执行的时间
第三章 指令系统及其寻址方式 3.1 寻址方式 3.2 指令格式 3.3 指令系统.
4.1 汇编语言 4.2 顺序结构程序 4.3 分支程序设计 4.4 循环程序设计 4.5 子程序设计
第3章 80x86汇编语言程序设计(上) 16位汇编版本 时间不够的情况下只讲16位汇编.
9.1 可编程并行输入/输出接口芯片8255A 9.2 可编程计数器/定时器 可编程串行输入/输出接口芯片8251A
3.3.5 程序控制指令 控制转移指令分为: 转移指令 循环控制指令 调用和返回指令 中断指令.
微机原理与接口技术 微机原理与接口技术 朱华贵 2015年11月26日.
微机原理与接口技术 第3章 8086/8088指令系统 黄强 深圳大学 信息工程学院.
微机原理与接口技术 微机原理与接口技术 朱华贵 2015年10月09日.
第5章 循环与分支程序设计  循环程序设计  分支程序设计.
汇编语言程序设计 Assembly Language Programming
微型计算机技术 教 学 指 导(三) 太原广播电视大学 郭建勇.
第三章 寻址方式与指令系统 3.1 寻址方式 一条指令通常由两大部分构成: 操作码 操作数
第6章 DMA传输 6.1 DMA传输原理 6.2 DMA控制器8237A A的编程使用 欢迎辞.
微机原理与接口技术 第2章 8086系统结构 朱华贵 2015年09月17日.
第四章 典型CPU及指令系统举例.
Assembly Language Programming
第2章 汇编语言与汇编程序 ——8086/8088指令系统 mov ax,12h call display Jmp 1234h.
第八章 输入输出程序设计 总线 CPU MEM I/O接口 I/O设备.
第4章 数据传送指令 罗文坚 中国科大 计算机学院
第3章 IA-32指令系统 3.1 基本数据类型 3.2 IA-32的指令格式 3.3 IA-32指令的操作数寻址方式
第8章 寻址方式与指令系统.
第二部分 PC 微机异步通信适配器的分析和使用 一、PC中的UART 1.INS PC16450/PC16550
第3章 8086/8088指令系统 mov ax,12h call display Jmp 1234h.
微机原理及应用 主讲:郑海春.
微机原理与接口技术 ——80x86微处理器 西安邮电大学 计算机学院 范琳.
第一章 8086程序设计 第二章 MCS-51程序设计 第三章 微机基本系统的设计 第四章 存贮器与接口 第五章 并行接口
汇编语言程序设计课程设计 第二次实验 DEBUG基本命令与算术运算指令
微型计算机原理及应用.
第五章 微处理器.
8086 指令系统特点 可变长指令:指令格式比较复杂。
第3章 微型计算机输入输出接口 3.1 输入/输出接口 3.2 输入输出数据传输的控制方式 3.3 开关量输入输出接口 欢迎辞.
第六章 子程序结构 §6.1 子程序的设计方法 §6.2 嵌套与递归子程序 §6.3 子程序举例 §6.4 DOS系统功能调用.
1.3 微型计算机的结构和工作原理.
逆向工程-汇编语言
第二章 80x86计算机组织 § x86微处理器 § 2.2 基于微处理器的计算机系统构成 § 2.3 中央处理机
第二章 IBM-PC微机的功能结构 2.1 IBM-PC微机基本结构 一、 微机的一般构成 一般计算机应包括五大部件:
第5章 循环与分支程序设计 学习目标: 了解并掌握循环程序的构造方法,尤其是对循环控制条件的设置以及可能出现的边界情况的考虑。掌握起泡排序算法这种多重循环程序设计中的常用方法。交换标志位的设置在此算法中更能提高效率。学会在数组排序算法中采用折半查找法来提高查找效率。学会使用跳跃表法实现CASE结构。
第二章 80x86计算机组织 x86微处理器 2.2 基于微处理器的计算机系统构成 2.3 中央处理机 2.4 存储器
微机原理与接口技术 ——80x86微处理器 西安邮电大学 计算机学院 范琳.
3.4.5 控制转移指令(Control transfer instructions) (一)、控制转移指令概述
微机原理与接口技术 微机原理与接口技术 朱华贵 2015年11月19日.
第五章:输入输出基本技术 主讲教师:范新民.
第10章 可编程外围接口芯片8255A及其应用 10.1 概述 A的工作原理 A的应用举例.
习题3 1、 分别说明下列指令的原操作数和目的操作数各采用什么寻址方式。 设定如下: ①立即寻址 ② ① ②寄存器寻址
第3章 指令系统和寻址方式 3.1指令系统概述 /8086CPU的寻址方式 3.3 指令的机器码表示方法(略)
第2章 80x86计算机组织  计算机系统  存储器  中央处理机  外部设备.
微机原理与接口技术 微机原理与接口技术 朱华贵 2015年11月13日.
《微型计算机原理与接口技术》 第4版 王良 宁德师范学院 吴宁 乔亚男 编著 清华大学出版社 出版
第5章 循环与分支程序设计  循环程序设计  分支程序设计.
微机原理与接口技术 微机原理与接口技术 朱华贵 2015年12月17日.
微机原理与接口技术 西安邮电大学计算机学院 宁晓菊.
微机原理与接口技术 ——8086微处理器 西安邮电大学 计算机学院 范琳.
微机原理与接口技术 微机原理与接口技术 朱华贵 2015年11月06日.
3. 逻辑运算指令 A、简单逻辑操作指令 CLR A. (不影响CY、AC、 OV标志) CPL A
第四章 8086/8088的指令系统 第一节 寻址方式 一、立即寻址 二、寄存器寻址 三、直接寻址 四、寄存器间接寻址 五、变址寻址
微机原理与接口技术 西安邮电大学计算机学院 宁晓菊.
C++语言程序设计 C++语言程序设计 第一章 C++语言概述 第十一组 C++语言程序设计.
第3章 80x86的指令系统和寻址方式 § x86的寻址方式 § x86的指令系统
第6章 子程序结构 在程序设计中,我们会发现一些多次无规律重复的程序段或语句序列。解决此类问题一个行之有效的方法就是将它们设计成可供反复调用的独立的子程序结构,以便在需要时调用。在汇编语言中,子程序又称过程。 调用子程序的程序称为主调程序或主程序。 2019/7/20 ch6.
第二章 8086系统结构 /8086的存储器组织 的系统配置及引脚功能 CPU时序
微机原理与接口技术 西安邮电大学计算机学院 宁晓菊.
第三章 8086的指令系统 8086指令特点 8086的寻址方式 8086的指令格式及数据类型 8086的指令集.
Presentation transcript:

3.3 8086/8088指令系统 为便于理解指令的形式和功能, 对指令中操作数符号的约定如下: 大小写字母无区别 3.3 8086/8088指令系统 为便于理解指令的形式和功能, 对指令中操作数符号的约定如下: 大小写字母无区别 oprd: 泛指各类操作数; oprd1, oprd2: 多操作数指令中, oprd1为目标操作数,oprd2为源操作数; dest, src: 目的操作数, 源操作数 reg: 8位或16位的通用寄存器; sreg: 段寄存器; acc: 累加器al或ax

reg8: 8位通用寄存器; reg16: 16位通用寄存器; mem: 8位或16位存储器; mem8: 8位存储器; mem16: 16位存储器;  disp: 8位或16位存储器地址偏移量; imm或data: 8位或16位立即数; imm8: 8位立即数; imm16: 16位立即数; port :I/O端口地址,port端口号0~255 ; ( ):寄存器内容; [ ] :存储单元的内容或偏移地址。

可分成如下6类: 数据传送指令 算术运算指令 逻辑运算和移位指令 串操作指令 程序控制指令 处理器控制指令

3.3.1 数据传送指令 可实现 存储器 寄存器 I/O 数据传送指令又可分为如下四种: 通用传送 目标地址传送 标志传送 输入输出

表 4-1 数据传送类指令表

1.通用传送指令 (1) MOV dest,src; dest←src ① MOV mem/reg1,mem/reg2 传送的是字节还是字取决于指令中涉及的寄 存器是8位还是16位。 具体来说可实现: ① MOV mem/reg1,mem/reg2 指令中两操作数中至少有一个为寄存器 例: MOV CL,DL MOV AX,BX MOV [SI],CX MOV CL,[BX+5]

② MOV reg,data ;立即数送寄存器 ③ MOV mem,data ;立即数送存储单元 ④ MOV acc,mem ;存储单元送累加器 ⑤ MOV mem,acc ;累加器送存储单元 ⑥ MOV segreg,mem/reg ;存储单元/寄存器送 段寄存器 ⑦ MOV mem/reg,segreg ;段寄存器送存储单 元/寄存器

MOV指令使用规则: 1) IP不能作目的寄存器 2) 不允许mem←mem 3) 不允许segreg←segreg 4) 立即数不允许作为目的操作数 5) 不允许segreg←立即数 6) 源操作数与目的操作数类型要一致

几个不能传送的解决办法:用AX作桥梁 MOV AX,MEM1 MOV AX,DS MOV AX,DATA 存储器←存储器: MOV MEM2,AX 段寄存器←段寄存器: MOV AX,DS MOV ES,AX 段寄存器←立即数: MOV AX,DATA MOV DS,AX

应用举例:将1000H开始的100个存储单元 全部填充为ASCII码2AH(*)。 程序段如下: MOV DI,1000H MOV CX,64H MOV AL,2AH AGAIN:MOV [DI],AL INC DI DEC CX JNZ AGAIN HLT

上程序段存放在代码段中,設(CS)=109EH,则各条指令存放地址如下: CS : IP 指令 109E : 0100 MOV DI,1000H 109E : 0103 MOV CX,64H 109E : 0106 MOV AL,2AH 109E : 0108 MOV [DI],AL 109E : 010A INC DI 109E : 010B DEC CX 109E : 010C JNZ 0108 109E : 010E HLT 109E : 0110

写入2AH(*)后,数据段中相应存储单元的内容改变如下: DS:1000 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A DS:1010 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A DS:1020 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A DS:1030 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A DS:1040 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A DS:1050 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A 2A DS:1060 2A 2A 2A 2A

(2) 堆栈操作指令 什么是堆栈? 按“后进先出(LIFO)”方式工作的存储区域。堆栈以字为单位进行压入弹出操作。 为什么要设置堆栈? 为什么要按 “后进先出”方式工作? 参见下图

(a) 主程序调子程序; (b) 子程序嵌套示意图 执行子 程序1 转子程序1 转子程序 执行子程序 2 转子程序2 执行子程序 压栈 压栈 IP’ IP IP IP’(下) IP(下) IP(下) 返回子程序1 弹出 弹出 继续执行 主程序 继续执行 子程序1 继续执行 主程序 返回主程序 返回主程序 (a) (b) 子程序调用示意图 (a) 主程序调子程序; (b) 子程序嵌套示意图

规定由SS指示堆栈段的段基址,堆栈指针SP始终指向堆栈的顶部,SP的初值规定了所用堆栈区的大小。堆栈的最高地址叫栈底。 进栈方向 堆栈段 栈顶 SP 退栈方向 栈底

① 压栈指令 PUSH src ; src为16位操作数 例:PUSH AX ;将AX内容压栈 执行操作:(SP)-1←高字节AH (SP)-2←低字节AL (SP)←(SP)- 2

设(AX)=1020H,执行示意图如图 2-8 PUSH AX指令执行示意图 存储区 存储区 (SS段) (SS段) 20 10 执行前 低地址 低地址 (SP)-2 (SP) 20 (AL) (SP)-1 10 (AH) (SP) 进栈方向 执行前 (AX)=1020 执行后 高地址 高地址 PUSH AX指令执行示意图

注意:进栈方向是高地址向低地址发展 (向上生成)。 注意:进栈方向是高地址向低地址发展 (向上生成)。 压栈指令的格式为: PUSH reg PUSH mem/reg PUSH segreg 例如: PUSH AX PUSH [BX] PUSH DS

② 弹出指令 POP dest 例:POP BX ;将栈顶内容弹至BX 执行操作:(BL)←(SP) (BH)←(SP)+1 (SP)←(SP)+2

POP BX 的执行示意图如下图所示 POP BX指令执行示意图 BX 存储区 存储区 (SS段) (SS段) 20 (SP) 10 低地址 低地址 (SP) 20 10 (SP)+1 (SP)+2 (SP) 出栈方向 10 20 执行后 (BX)=1020 执行前 BX 高地址 高地址 POP BX指令执行示意图

堆栈指令使用时应注意几点: ①堆栈操作总是按字进行 ②不能从栈顶弹出一个字给CS ③堆栈指针为SS:SP,SP永远指向栈顶

(3)交换指令XCHG 格式:XCHG reg,mem/reg 功能:交换两操作数的内容。 要求:两操作数中必须有一个在寄存器中; 操作数不能为段寄存器和立即数; 源和目地操作数类型要一致。 举例: XCHG AX,BX XCHG [2000],CL

(4)查表指令XLAT 执行的操作:AL←[(BX)+(AL)] 例如:内存数据段有一张16进制数的ASCII码表,设首地址为2000H,如欲查出表中第11个代码(代码序号从0开始)即十六进制数B的ASCII码。ASCII表在DS段中,并假设(DS)=4000H。见下页图。 ‘ ’

... ... ... 存储器 42000H+0 30 ‘0’ 31 ‘1’ 32 ‘2’ 39 ‘9’ 41 ‘A’ 42000H+0BH 45 ‘E’ 46 ‘F’ ... 十六进制数ASCII码表

则可用如下几条指令实现: MOV BX,2000H ;(BX)←表首地址 MOV AL,0BH ;(AL)←序号 XALT ; 查表转换 执行后得到:(AL)= 42H = ’ B’ 注意:转换表长度最大为256个表项(字节)。

(5)字节-字转换指令 格式:CBW ;把AL的符号位复制到AH 即8位带符号数AL16位带符号数AX=AH AL, 真值不变 CWD ;把AX的符号位复制到DX 即16位带符号数AX 32位带符号数DX AX, 真值不变 用途:用于有符号数的除法。 例如:(AL) = A7H,则执行CBW后,AH的内 容为FFH。 注意: 带符号数扩展与无符号数扩展的区别

2. 输入输出(I/O)指令 只限于用累加器AL或AX来传送信息。 功能: (累加器)←→I/O端口 (1)输入指令IN 格式: IN acc,PORT ;PORT端口号0~255 IN acc,DX ;DX表示的端口范围达64K 例:IN AL,80H ;(AL)←(80H端口) IN AL,DX ;(AL)←((DX))

(2) 输出指令OUT 格式:OUT port,acc OUT DX,acc 例:OUT 68H,AX ;(69H,68H)←(AX) OUT DX,AL ;((DX))←(AL) 在使用间接寻址的IN/OUT指令时,要事先用传送指令把I/O端口号设置到DX寄存器,如: MOV DX,220H IN AL,DX ;将220H端口内容读入AL

3. 地址传送指令 共有三条: 格式:LEA reg,mem ; 将指定存储器的16位偏移 地址送指定寄存器 LDS reg, mem32; DS:reg←(mem开始的四 个内存单元) LES reg, mem32; 同上,但DS改为ES 要求源操作数必须是一个内存操作数,目的操作数必须是一个16位的通用寄存器。

例:LEA BX,[SI+10H] 设:(SI)=1000H 则执行该指令后,(BX)=1010H 注意:以下两条指令差别: LEA BX,BUFFER ; 将符号地址为BUFFER的存储单元的偏移地址取到 BX中; MOV BX,BUFFER ;将BUFFER存储单元中的内容取到 BX中.

下面两条指令等效: LEA BX,BUFFER MOV BX, OFFSET BUFFER 其中OFFSET BUFFER表示存储器单元BUFFER的偏移地址。 二者都可用于取存储器单元的偏移地址,但LEA指令可以取动态的地址,OFFSET只能取静态的地址。

4.标志传送指令 共有四条: (1)读标志指令LAHF LAHF把标志寄存器低8位中的5个标志位传送到AH中的指定位,如下图所示: FLAG OF DF IF TF SF ZF AF PF CF LAHF指令的功能

SAHF的功能与LAHF的功能正好相反,用图来示意,只要将上图中5个箭头方向反一下即可。 FLAG OF DF IF TF SF ZF AF PF CF SAHF指令的功能

(3)把标志寄存器推入栈顶指令PUSHF 执行的操作:(SP)-1←标志寄存器高8位 (SP)-2←标志寄存器低8位 (SP)←(SP)-2 (4)从栈顶弹出标志寄存器指令POPF 执行的操作:标志寄存器低8位←(SP) 标志寄存器高8位←(SP)+1 (SP)←(SP)+2 PUSHF和POPF指令用于保护和恢复标志寄存器内容。

. . . 例如: PUSH AX PUSH CX PUSHF ;保护标志寄存器内容 ;这段程序要用到AX,CX以及标志位 POPF ;恢复标志寄存器内容 POP CX POP AX . . .

数据传送指令中,除SAHF和POPF这两条指令外,其余所有指令均不影响标志位(即标志寄存器FLAGS的6个状态标志)。