WiFi-Enabled Smart Human Dynamics Monitoring

Slides:



Advertisements
Similar presentations
數位訊號處理概論 [ 音樂情感 Music Emotion ] 資工三甲 4A1G0030 李裕家 1.
Advertisements

組織氣候與工作投入關係之研究 - 以某醫學中心暨委託經營管理醫院為例 中文摘要 本研究主要目的在探討某醫學中心暨二家委託經營管理醫院之組織氣候及員工工作投入之程度,及 比較不同個人屬性與醫院屬性之組織氣候與工作投入之差異,採橫斷式調查法、用多階段隨機抽樣 方式,以某醫學中心暨委託經營管理的二家醫院員工為研究對象,進行結構式問卷調查,收集時間.
統合分析臨床試驗實之文獻品質評分:以針灸療法之統合分析為例
國立台灣師範大學 國際人力資源發展研究所 施正屏博士
牙齒共振頻率之臨床探討 論 文 摘 要 論文名稱:牙齒共振頻率之臨床探討 私立台北醫學院口腔復健醫學研究所 研究生姓名:王茂生 畢業時間:八十八學年度第二學期 指導教授:李勝揚 博士 林哲堂 博士 在口腔醫學的臨床診斷上,到目前為止仍缺乏有效的設備或方法可以評估或檢測牙周之邊界狀態。臨床上有關牙周病的檢查及其病變之診斷工具,
二維品質模式與麻醉前訪視滿意度 中文摘要 麻醉前訪視,是麻醉醫護人員對病患提供麻醉相關資訊與服務,並建立良好醫病關係的第一次接觸。本研究目的是以Kano‘s 二維品質模式,設計病患滿意度問卷,探討麻醉前訪視內容與病患滿意度之關係,以期分析關鍵品質要素為何,作為提高病患對醫療滿意度之參考。 本研究於台灣北部某醫學中心,通過該院人體試驗委員會審查後進行。對象為婦科排程手術住院病患,其中實驗組共107位病患,在麻醉醫師訪視之前,安排先觀看麻醉流程衛教影片;另外對照組111位病患,則未提供衛教影片。問卷於麻醉醫師
华东师范大学软件学院 王科强 (第一作者), 王晓玲
B型肝炎帶原之肝細胞癌患者接受肝動脈栓塞治療後血液中DNA之定量分析
-Artificial Neural Network- Hopfield Neural Network(HNN) 朝陽科技大學 資訊管理系 李麗華 教授.
分析抗焦慮劑/安眠劑之使用的影響因子在重度憂鬱症及廣泛性焦慮症病人和一般大眾的處方形態
Chapter 8 Liner Regression and Correlation 第八章 直线回归和相关
Chaoping Li, Zhejiang University
Mode Selection and Resource Allocation for Deviceto- Device Communications in 5G Cellular Networks 林柏毅 羅傑文.
版權所有 翻印必究 指導教授:林克默 博士 報告學生:許博淳 報告日期: 2011/10/24. 版權所有 翻印必究 Results and discussion The crystalline peak at 33° corresponds to the diffraction of the (200)
XI. Hilbert Huang Transform (HHT)
A TIME-FREQUENCY ADAPTIVE SIGNAL MODEL-BASED APPROACH FOR PARAMETRIC ECG COMPRESSION 14th European Signal Processing Conference (EUSIPCO 2006), Florence,
AN INTRODUCTION TO OFDM
An Adaptive Cross-Layer Multi-Path Routing Protocol for Urban VANET
Feng Lin, Chen Song, Yan Zhuang, Wenyao Xu, Changzhi Li, Kui Ren
Applications of Digital Signal Processing
Platypus — Indoor Localization and Identification through Sensing Electric Potential Changes in Human Bodies.
Thinking of Instrumentation Survivability Under Severe Accident
報告人:丁英智 資策會 網路多媒體研究所 11/3/2006
模式识别 Pattern Recognition
Digital Terrain Modeling
Acoustic规范和测试 Base Band 瞿雪丽 2002/1/30.
Noise & Distortion in Microwave Systems.
Flash数据管理 Zhou da
Digital Terrain Modeling
機械波 Mechanical Waves Mechanical wave is a disturbance that travels through some material or substance called the medium for wave. Transverse wave is the.
基于人眼追踪的手机解锁系统 报告人:李映辉 指导老师:王继良
机器人学基础 第四章 机器人动力学 Fundamentals of Robotics Ch.4 Manipulator Dynamics
聲轉電信號.
Outrigger Optimization for Super Tall Structures Under Multiple Constraints 多约束条件下超高结构伸臂系统优化.
Jia Zhao Simon Fraser University BC, Canada
VI. Brief Introduction for Acoustics
变频器和滤波器 分类和应用.
学习报告 —语音转换(voice conversion)
2012清大電資院學士班 「頂尖企業暑期實習」 經驗分享心得報告 實習企業:工業技術研究院 電光所 實習學生:電資院學士班  呂軒豪.
The Nature and Scope of Econometrics
Towards Emotional Awareness in Software Development Teams
谈模式识别方法在林业管理问题中的应用 报告人:管理工程系 马宁 报告地点:学研B107
ISO9001:2008 GB/T19001:2008 换版动态.
Version Control System Based DSNs
VIDEO COMPRESSION & MPEG
生物統計 1 課程簡介 (Introduction)
基于人眼追踪的手机解锁系统 报告人:李映辉 指导老师:王继良
準確性(Accuracy) 誤差種類 儀器準確度 時間因素 儀器參數.
虚 拟 仪 器 virtual instrument
Learn Question Focus and Dependency Relations from Web Search Results for Question Classification 各位老師大家好,這是我今天要報告的論文題目,…… 那在題目上的括號是因為,前陣子我們有投airs的paper,那有reviewer對model的名稱產生意見.
Inter-band calibration for atmosphere
WEBee: Physical-Layer Cross-Technology Communication via Emulation
Distance Vector vs Link State
An Efficient MSB Prediction-based Method for High-capacity Reversible Data Hiding in Encrypted Images 基于有效MSB预测的加密图像大容量可逆数据隐藏方法。 本文目的: 做到既有较高的藏量(1bpp),
An organizational learning approach to information systems development
An Quick Introduction to R and its Application for Bioinformatics
Speaker : YI-CHENG HUNG
5. Combinational Logic Analysis
Distance Vector vs Link State Routing Protocols
本講義為使用「訊號與系統,王小川編寫,全華圖書公司出版」之輔助教材
Chapter 9 Validation Prof. Dehan Luo
Class imbalance in Classification
簡單迴歸分析與相關分析 莊文忠 副教授 世新大學行政管理學系 計量分析一(莊文忠副教授) 2019/8/3.
Principle and application of optical information technology
Gyrophone: Recognizing Speech From Gyroscope Signals
WiFi is a powerful sensing medium
Gaussian Process Ruohua Shi Meeting
《神经网络与深度学习》 第10章 模型独立的学习方式
Presentation transcript:

WiFi-Enabled Smart Human Dynamics Monitoring

Related work Device-based methods Device-free methods (without CSI) limited by requiring the users to carry the appropriate equipments Device-free methods (without CSI) limited by high deployment costs and privacy concerns Device-free methods (with CSI) focus on one specific aspect or coarse-grained 基于一些设备和传感器的方法 需要专用的设备 使用RSSI或者图片等信息(拍照,摄像)来获取 部署话费高或者拍照涉及到隐私保护 使用CSI来获取 要么方面比较单一 要么精度不高

This work A fine-grained comprehensive view of human dynamics using existing WiFi infrastructures Participant number estimation Human density estimation Walking speed and direction derivation 使用wifi做一个细致全面获取动态数据的系统 人数量的估计、密度的估计、行走速度和方向的估计(一个人)

CSI Fundamental In a multipath wireless environment, the received wireless signal can be expressed as: y and x = are the receiving and transmitting signals in vector form H = and n are the channel response and the ambient noise Estimation of H represents the channel state information (CSI) readily available from many commercial wireless devices three major factors: amplitude attenuation, phase shift and the propagation delay 公式具体解释: Ai 是第i个路径的复值幅度衰减 ai * e jQi e –jwt 是第i个路径的相位偏移 t 传播时延 = l/c l:第i条路径 c 是光速

SYSTEM DESIGN Data Preprocessing module Three functional modules filter out high frequency noise remove the subcarriers that are not sensitive to capture human dynamic characteristics Three functional modules (our system takes time-series of raw CSI readings as the input and each CSI measurement contains 30 Nt × Nr , matrices, where Nt and Nr are the number of antennas on transmitter and receiver, respectively.)

Participant Counting Investigate and determine the effective features monotonic relationship Describe the monotonic relationship via a non-linear model multiple dimensions(different links, frequency bands, channels) can be generalized and applied to other indoor environments (只需要采集晚上或者早上空房间的CSI,更新参数即可)

Participant Counting Feature Extraction CSI amplitude variance CSI amplitude range CSI amplitude mode Entropy of HIP (i.e., phase difference). (从Mimo支持的wifi设备的两跟天线间CSI差异提取有效特征) 从CSI数据的相位和幅值信息提取出四个特征 幅度方差、幅度范围、幅度模式、HIP熵

Participant Counting Feature-based Non-linear Regression logistic bounded exponential function: use inverse function (单一feature) The final estimate on the number of participants is obtained by minimizing the total estimation errors produced by these N features as follow: 逻辑有界指数函数 五个场景求解参数 得到单一特征的模型 Yfi第i个特征输出 wi实验测定 拓展到其他环境。a,b决定模型的形状、偏移 c,d描述形状曲率,在不同环境是稳定的 测定a,b即可

Participant Counting Multiple Links is the output from the i-th link Multiple Channels is the output from the i-th channel 求平均 两条链路 Wl = 0.5 四个信道 Wc = 0.25

Human Density Estimation Distribution Analysis over Multiple Subcarriers Earth Mover Distance(EMD) Calculation Profiles built from a fixed number of people would be enough 评测在哪一个块区域比较密集,比如四块,哪块人多 首先根据密度分布构建CSI在多重载波上的幅度方差分布图 得到CSI计算幅度方差分布,EMD匹配 EMD用于评估两个概率分布的相似度的一个方法 sensitive 载波: 邻居拥有较低方差 位置独立的,与人数无关,只是值有所不同

Speed and Direction Derivation Phase Difference Information Extraction Total Harmonic Distortion (THD)-based algorithm(speed) FFT-based algorithm(direction)

THD-based algorithm(speed) Predefined threshold to determine static or walking period given the spectrum derived from the time series of CSI relative phases, the power level in lower frequency band decreases as the working speed increases THD analysis to perform walking speed estimation THD分析导出输入信号的周期图,找到基带信号,得到一些列新的csi的值

THD-based algorithm(speed) e = h * w monotonic relationship with walking speed each peak of the fundamental signal stands for the scenario that the person walks across the LOS between the transmitter and receiver

FFT-based algorithm(direction) Segment CSI measurements using a fixed time window (3 ∼ 5 seconds) Define the frequency distribution as: only examine the dominant frequency bin e(1) 三个方向: 0,45,90(某一链路) e(n)表示第n个输出fn进过fft变化的频率分布 (采样率50hz 5点fft变换 5段 10hz的带宽) e(1)受影响最大 D图 能量分布 和link2角度

FFT-based algorithm(direction) CSI frequency distribution and variance on two perpendicular wireless links as a combined feature vector Trains a support vector machine (SVM)model with Gaussian kernel Classifies the walking direction based on the pre-built walking direction profiles above(three walking directions (i.e., 0◦, 45◦, 90◦)) 某一方向的高速行走导致低方差值 低速导致高方差的分布

EVALUATION The Number of Participants Estimation Non-linear Model Construction 较好的单调性

EVALUATION The Number of Participants Estimation semi-supervised Learning Approach 某个建好的模型拓展到其他室内 在A位置建好的模型在A,B,C表现 80%准确率

EVALUATION The Number of Participants Estimation data Fusion(multi-links & multi-channels) 5G表现好 2.4G干扰大一些 (c)(d)without channel combination prove that using more channels improves the performance of our system up to 8%. (We observe that without channel combination, the system performance at three different locations degrades to 70%, 70% and 86% at 2.4GHz and 74%, 81% and 87% at 5GHz.)

EVALUATION Human Density Estimation 从A建好的profiles应用到ABC三处的准确率 (indicate that profiles built from the training rooms can be extended to other rooms since the pattern of the CSI distribution is preserved) 不同人数建立的profile的EMD计算相似度 成功预测 R1对应R1 Successfully predicts the people density region using profiles constructed from different numbers of people

EVALUATION Walking Speed and Direction Derivation walking speed

EVALUATION Walking Speed and Direction Derivation walking direction 分类结果 accuracy of 90% B 训练数据 (We show the walking direction classification results as a confusion matrix in Figure 15(a). .e results show that our walking direction estimation method can achieve an average accuracy of 96.6% for the three walking directions)

谢谢聆听~ We will explore the walking speed and direction estimation under the multi-people scenario in our future work.