Speaker : YI-CHENG HUNG

Slides:



Advertisements
Similar presentations
博奥文明之旅团支部 ——师范学院小学教育专业063团支部.
Advertisements

思想道德修养与法律基础 ( 2013修订版) 第一章 追求远大理想 坚定崇高信念.
第二章 语言测试的功能与分类 湖南师范大学外国语学院 邓 杰 教授.
Unsupervised feature learning: autoencoders
牙齒共振頻率之臨床探討 論 文 摘 要 論文名稱:牙齒共振頻率之臨床探討 私立台北醫學院口腔復健醫學研究所 研究生姓名:王茂生 畢業時間:八十八學年度第二學期 指導教授:李勝揚 博士 林哲堂 博士 在口腔醫學的臨床診斷上,到目前為止仍缺乏有效的設備或方法可以評估或檢測牙周之邊界狀態。臨床上有關牙周病的檢查及其病變之診斷工具,
大规模深度学习算法 Deep Belief Network及其应用
建筑工程项目管理.
何謂專案管理? 美國專案管理學會 專案管理就是「為達成或超出利害關係人的需求或期望,把種種知識、技能、工具、技術應用在專案活動上,…,其牽涉到相互競爭的範疇,時間、成本、品質,以及利害關係人各種不同需求和期望之間的平衡」
資料採礦與商業智慧 第四章 類神經網路-Neural Net.
二維品質模式與麻醉前訪視滿意度 中文摘要 麻醉前訪視,是麻醉醫護人員對病患提供麻醉相關資訊與服務,並建立良好醫病關係的第一次接觸。本研究目的是以Kano‘s 二維品質模式,設計病患滿意度問卷,探討麻醉前訪視內容與病患滿意度之關係,以期分析關鍵品質要素為何,作為提高病患對醫療滿意度之參考。 本研究於台灣北部某醫學中心,通過該院人體試驗委員會審查後進行。對象為婦科排程手術住院病患,其中實驗組共107位病患,在麻醉醫師訪視之前,安排先觀看麻醉流程衛教影片;另外對照組111位病患,則未提供衛教影片。問卷於麻醉醫師
结合语义理解的语音识别技术和深度学习技术
软件质量保证与测试 第4讲 软件测试依据和规范
-Artificial Neural Network- Hopfield Neural Network(HNN) 朝陽科技大學 資訊管理系 李麗華 教授.
CHT Project Progress Report
A Question Answering Approach to Emotion Cause Extraction
深層學習 暑期訓練 (2017).
Paper Reading 2017/04/18 Yuan Xin.
Some Effective Techniques for Naive Bayes Text Classification
Rate and Distortion Optimization for Reversible Data Hiding Using Multiple Histogram Shifting Source: IEEE Transactions On Cybernetics, Vol. 47, No. 2,February.
袁 星 谢正辉,梁妙玲 中国科学院大气物理研究所
Large-Scale Malware Indexing Using Function-Call Graphs
Platypus — Indoor Localization and Identification through Sensing Electric Potential Changes in Human Bodies.
毕业论文报告 孙悦明
NLP Group, Dept. of CS&T, Tsinghua University
Source: IEEE Access, vol. 5, pp , October 2017
GPU分散式演算法設計與單機系統模擬(第二季)
Decision Support System (靜宜資管楊子青)
InterSpeech 2013 Investigation of Recurrent-Neural-Network Architectures and Learning Methods for Spoken Language Understanding University of Rouen(France)
Advanced Artificial Intelligence
Word-Entity Duet Representations for Document Ranking
Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi
Randomized Algorithms
理論的功能 理論可幫助我們「瞭解」現象, 理論可用來「解釋」現象之間的關係。
Probabilistic Neural Network (PNN)
報告人:林冠丞 指導教授:陳偉業 班級:碩研資管一甲 學號:MA490212
線性相關與直線迴歸 基本概念 線性相關:兩個連續變項的共變關係,且有線性關係。所謂 的線性關係乃指兩個變項的關係可以被一條最具
从百科类网站抽取infobox 报告人:徐波.
Decision Support System (靜宜資管楊子青)
Machine Translation for Conversational Texts
高性能计算与天文技术联合实验室 智能与计算学部 天津大学
Advanced word vector representations
MNIST 手寫數字影像辨識.
Maintaining Frequent Itemsets over High-Speed Data Streams
期末報告-- [ridge regression]
前向人工神经网络敏感性研究 曾晓勤 河海大学计算机及信息工程学院 2003年10月.
Design and Analysis of Experiments Final Report of Project
ImageNet Classification with Deep Convolutional Neural Networks
Learn Question Focus and Dependency Relations from Web Search Results for Question Classification 各位老師大家好,這是我今天要報告的論文題目,…… 那在題目上的括號是因為,前陣子我們有投airs的paper,那有reviewer對model的名稱產生意見.
Representation Learning of Knowledge Graphs with Hierarchical Types
Convolutional Neural Network
A Data Mining Algorithm for Generalized Web Prefetching
Neural Networks: Learning
Deep Learning with Limited Numerical Precision
DeepPath 周天烁
An Efficient MSB Prediction-based Method for High-capacity Reversible Data Hiding in Encrypted Images 基于有效MSB预测的加密图像大容量可逆数据隐藏方法。 本文目的: 做到既有较高的藏量(1bpp),
李宏毅專題 Track A, B, C 的時間、地點開學前通知
Efficient Query Relaxation for Complex Relationship Search on Graph Data 李舒馨
欠拟合与过拟合 龙沛洵
Introduction of this course
Representation Learning Using Multi-Task Deep Neural Networks for Semantic Classification and Information Retrieval Xiaodong Liu, Jianfeng Gao, Xiaodong.
An Quick Introduction to R and its Application for Bioinformatics
More About Auto-encoder
Speaker : YI-CHENG HUNG
Chapter 9 Validation Prof. Dehan Luo
Speaker : YI-CHENG HUNG
Automated ICD-9 Coding via A Deep Learning Approach
WiFi is a powerful sensing medium
Video Caption Technique Based on Joint Image - Audio Deep Learning
Gaussian Process Ruohua Shi Meeting
Learning node embeddings in interaction Graphs
Presentation transcript:

Speaker : YI-CHENG HUNG Infer Cause of Death for Population Health Using Convolutional Neural Network Sourse : BCB 2017 Advisor : JIA-LING KOH Speaker : YI-CHENG HUNG Date:2018/02/06

Outline Introduction Method Experiment Conclusion

Outline Introduction Method Experiment Conclusion

Introduction The cause of death is I25. 死亡證明 環境:從死亡證明中的icd10sequenc中predict 最為可能性的icd10 code

Introduction-motivation challenges Traditional one hot vector Large dimension of inputs feature extraction will require large computation resources 無法處理序列長度不同的inputs 動機:傳統模式跟CNN方式的比較

Introduction-goal 目的:以CNN 的方式,從死亡證明中的icd10sequenc中predict 最為可能性的icd10 code

Outline Introduction Method Experiment Conclusion

Method-CNN 整體架構各層設定及說明

Method-CNN 整體架構各層設定及說明 Vocabulary(詞彙表) of ICD-10 conditions

Method-CNN D Word embedding[28] 整體架構各層設定及說明

Method-CNN D H k 卷積運算子 bias 整體架構各層設定及說明 The setting of kernel size for the convolution layers are 3,5,7 Activation Function:Tanh,ReLU

Method-CNN 整體架構各層設定及說明 影像辨識中常用的是最大池化 Maximum Average Pooling

Method-CNN 優點:快速學習、不會過度依賴預設值、控制過度學習(減少Dropout的必要) 批次正規化 Γ,β為參數,初設為Γ =1, β =0,藉由學習調整為適當值。

Method-CNN Test error Test Train 目的:用以減少過度學習(overfitting)

Method-CNN 整體架構各層設定及說明 影像辨識中常用的是最大池化

Configurations of CNN Model is built with PyTorch parameter setting Static Dynamic ES eval Model is built with PyTorch parameter setting embedding dimension 128 three kernel sizes for the convolution layers 3,5,7 Dropout probability 0.5 maximum norm(L2 norm) 3.0

How to dynamically build neural network? (TensorFlow) (PyTorch,Chainer)

Early stopping 優點:節省可觀的時間,並保持效能 首先將一小部分訓練集作為我們的開發集 每一個epoch(週期) 結束時,計算開發集的accuracy 一旦我們觀察到開發集上性能越來越差 但測試性能超過了我們預先設定的值 可能 overfitting,終止訓練過程 我們首先將一小部分訓練集作為我們的開發集,然後在其餘的訓練集上進行訓練。 一旦開發集上的測試性能比其餘的訓練性能差,並且測試性能超過了我們預先設定的閾值,則可以得出結論:訓練可能已經過度裝配數據,並終止訓練過程。

Outline Introduction Method Experiment Conclusion

Experiment Dataset overview Baseline method Experiment Settings Evaluation Metrics Experiment Results Parameter Analysis Analyzing Embeddings of Medical Conditions

Experiment-Dataset overview 2 million death certificates in the U.S. from2014 Removing identical records and filter out records with length less than 3 Obtain 1,499,128 records. 1610 input conditions 1180 possible classes as cause of death

Experiment-Baseline method Feature extraction classifiers BoW-bag of word Naive Bayes、Logistic Regression Word embedding Shallow Architectures of shallow classifiers:

Experiment-Settings Training set Development set Test sets 資料集的切割 7.9 0.1 1 BoW CNN 、Shallow 硬體 CPU+60GB RAM NVIDIA K80 GPU Mini-batch 64 epoch 2

Experiment-Evaluation Metrics Accuracy(ACC) Cross Entropy Loss F1 score Cohen’s kappa K=1,代表完全吻合

Experiment-Cohen’s kappa

Classification Results

Experiment-Parameter Analysis The base model is the standard static version of CNN

Experiment-Parameter Analysis The base model is the standard static version of CNN

Experiment-Analyzing Embeddings of Medical Conditions side-product

CONCLUSION This paper showed how a modern deep learning architecture (CNN)can be adapted to identify the cause of death. The model shows significant improvement over the traditional baselines Handle even larger scale datasets than traditional methods Provide human understandable interpretation for the model 現在的深度學習架構CNN模型對資料集的高適應性