制冷与低温技术原理 (八) 多媒体教学课件 李文科 制作
第八章 液态低温工质的制取 第一节 低温工质的性质 第二节 气体液化循环
第一节 低温工质的性质 内 容 提 要 一、低温工质的种类及其热力性质 二、空气及其组成气体的性质 三、氢的性质 四、氦的性质 第一节 低温工质的性质 内 容 提 要 一、低温工质的种类及其热力性质 二、空气及其组成气体的性质 三、氢的性质 四、氦的性质 五、低温工质的p、v、T参数计算
第一节 低温工质的性质 一、低温工质的种类及其热力性质 第一节 低温工质的性质 一、低温工质的种类及其热力性质 在深冷技术中用于制冷循环或液化循环的工质通称为低温工质。它们在封闭式制冷系统中用作制冷工质,在气体分离及液化装置中既作为原料气体或产品气体,同时也起制冷工质的作用。低温工质液化后可以作为低温制冷剂。 凡标准沸点低于120K的元素或化合物以及它们的混合物,原则上均可作为低温工质。深冷技术中最常见的工质有空气、氧、氮、氩、甲烷等。表8-1列举了常用低温工质的基本热物理性质。氙气虽然标准沸点高于120K,因其和空气分离有密切关系,所以一并收入。 表8-1 常用低温工质的基本性质(略)
第一节 低温工质的性质 低温工质在常温、常压下均为气态,它们都具有很低的临界温度,较难液化。在常温及一般低温下,当压力不很高(和常压相比)时,低温工质所处的状态离两相区仍较远,比体积仍较大,因而可近似地当作理想气体。 在深冷技术研究和应用中,经常会用到液态低温工质,如液氮、液氧、液氢、液氖等。因此,对液化气体性质也将着重讨论。
第一节 低温工质的性质 二、空气及其组成气体的性质 1.空 气 第一节 低温工质的性质 二、空气及其组成气体的性质 1.空 气 空气是一种多组分混合气体,其主要组分是氧、氮、氩、二氧化碳,还有微量的稀有气体(氖、氦、氪、氙)、甲烷及其他碳氢化合物、氢、臭氧等。此外,空气中还有少量的水蒸气及灰尘等。 在地球表面,干燥空气的组成列于表8-2中(表略)。 若不考虑水蒸气、二氧化碳和各种碳氢化合物,则地面至100km高度的空气平均组成保持恒定值。在25km高空臭氧的含量有所增加。在更高的高空,空气的组成随高度而变,且明显地同每天的时间及太阳活动有关。
第一节 低温工质的性质 常温下的空气是无色无味的气体,液态空气则是一种易流动的浅黄色液体。一般当空气被液化时二氧化碳已经清除掉,因而液态空气的组成是20.95%氧、78.12%氮和0.93%氩,其他组分含量甚微,可以略而不计。 空气作为混合气体,在定压下冷凝时温度连续降低,如在标准大气压(101.3kPa)下,空气于81.7K(露点)开始冷凝,温度降低到78.9K(泡点)时全部转变为饱和液体。这是由于高沸点组分(氧、氩)开始冷凝较多,而低沸点组分(氮)到过程终了才较多地冷凝。 液态空气作为混合液,在定压蒸发时蒸发温度也是连续变化的。随着蒸发过程的进行,因低沸点组分氮较多地蒸发,混合液组成发生变化,致使液体的高沸点组分氧含量相应地增加,所以沸点也就相应提高。
第一节 低温工质的性质 液态空气具有较低的沸点和凝固温度(约为60.15K),可以用作冷却剂。通过减压(抽真空)的方法,还可以将其沸点温度降低到65K左右。但是这种操作是危险的,因为蒸发会使剩余液体中氧的质量分数增加,引起减压用的真空泵发生爆炸。
第一节 低温工质的性质 2.氮和氧 氮是一种无色无味的气体,比空气稍轻,难溶于水。因氮的化学性质不活泼,在通常情况下很难与其他元素直接化合,故可用作保护气体;但在高温下,氮能够同氢、氧及某些金属发生化学反应。因为氮无毒,又不能磁化,其沸点比空气低,所以液氮是低温研究中最常用的安全冷却剂,但需当心引起窒息。液氮也用于氢、氦液化装置中,作为预冷。液氮应小心储存,避免同碳氢化合物长时间的接触,以防止碳氢化合物溶于其中而引起爆炸。 液氮的蒸发温度为77.36K。在标准大气压下,液氮冷却到63.2K时转变成无色透明的结晶体。液氮的沸点和凝固点之间的温差不到15K,因而在用真空泵减压时容易使
第一节 低温工质的性质 其固化。因固态氮的密度比液氮大,所以沉降在底部。在大约35.6K时,固态氮产生同素异形转变,并伴随比热容的增大。转化热约为8.2kJ/kg。 氧是一种无色无味的气体,标准状态下的密度是1.430kg/m3,比空气略重。氧较难溶解于水。氧的化学性质非常活泼,它能与很多物质(单质和化合物)发生化学反应,同时放出热量;反应剧烈时还会燃烧发光。 在标准大气压下,氧在90.188K时变为易于流动的淡蓝色液体;在54.4K时凝固成淡蓝色的固体结晶。液氧和固态氧的淡蓝色是含有少量的氧聚合物O4而引起的。 虽然氧的沸点比氮约高13K,可是它的凝固点却比氮低约9K。固态氧的密度大,因此在液氧中下沉。在43.08K
第一节 低温工质的性质 和23.89K时,固态氧发生同素异形转变,并伴随有转化热。在43.08K时转化热超过溶化热,约为23.2kJ/kg;在23.89K时转化热只有2.93kJ/kg。 氧与其他大多数气体的显著不同在于具有强的顺磁性,且某些气态的氧化物(如一氧化氮)也有顺磁性。氧的这一特性已被利用来制作氧磁性分析仪,根据磁化率的变化可以测出抗磁性气体混合物中所含微量氧的质量分数。 由于氧的化学活性很强,是一种强氧化剂,所以氧同碳氢化合物混合是很危险的。液氧中存在碳氢化合物结晶体已引起过严重爆炸事故,因此,液氧必须严格避免同各种油脂、润滑油、炭、木材、沥青、纺织品接触。
第一节 低温工质的性质 3.氩、氖、氦、氪和氙 第一节 低温工质的性质 3.氩、氖、氦、氪和氙 空气中含有氩、氖、氦、氪和氙等稀有气体。氩是一种无色无味的气体;不燃烧,也不助燃;化学性质很稳定,一般状态下不生成化合物,没有毒性。
第一节 低温工质的性质 三、氢的性质 1.氢的构成及热物理性质 第一节 低温工质的性质 三、氢的性质 1.氢的构成及热物理性质 氢有三种同位素:相对原子质量为1的氕(符号H);相对原子质量为2的氘(符号D)和相对原子质量为3的氚(符号T)。氕(通称氢)和氘(亦称重氢)是稳定的同位素;氚则是一种放射性同位素,半衰期为12.26年。氚放出β射线后转变成3He。氚极其稀有,在1018个氢原子中只含有0.4~67个氚原子,所以自然氢中几乎全部是氕(H)和氘(D),它们的含量比约为6400:1。不论是哪种方法获得的氢,其中氕的含量高达99.987%,氘(D)含量的范围在0.013%~0.016%之间。事实上,因为氢是双原子气体,所以绝大多数的氘原子都是和氕原子结合在一起形成氘化氢(HD)。
第一节 低温工质的性质 分子状态的氘—D2在自然氢中几乎不存在。因此,普通的氢实际上是H2和HD的混合物,HD在混合物中的含量在0.026%~0.032%之间。 在通常状况下,氢是无色、无味、无臭的气体,极难溶解于水。氢是所有气体中最轻的,标准状态下的密度为0.0899kg/m3,只有空气密度的1/14.38。在所有的气体中,氢的比热容最大、热导率最高、粘度最低。氢分子以超过任何其他分子的速度运动,所以氢具有最高的扩散能力,不仅能穿过极小的空隙,甚至能透过一些金属,如钯(Pd)从240℃开始便可以被氢渗透。 氢的转化温度比室温低得很多,其最高转化温度约为204K。因此,必须把氢预冷到此温度以下再节流方能产生冷效应。
第一节 低温工质的性质 众所周知,氢是一种易燃易爆物质。氢气在氧或空气中燃烧时产生几乎无色的火焓(若氢中不含杂质),其传播速度很快,达2.7m/s;着火能很低,为2.0×10-4J。在大气压力及293K时氢气与空气混合物的燃烧体积分数范围是4%~75%;当混合物中氢的体积分数为18%~65%时特别容易引起爆炸,因此进行液氢操作时需要特别小心,而且应对液氢纯度进行严格的控制与检测。 氢不仅在深冷技术中可以用作工质,或者液化之后可作为低温冷却剂,而且氢还是比较理想的清洁能源。在火箭技术中氢被作为推进剂,同时利用氢为原料还可以产生重氢,以满足核动力的需要。
第一节 低温工质的性质 2.氢的正仲转化 由双原子构成的氢分子H2内,由于两个氢原子核自旋方向的不同,故存在着正、仲两种形态。正氢(o-H2)的原子核自旋方向相同,仲氢(p-H2)的原子核自旋方向相反。正、仲态的平衡组成与温度有关。表8-3列出了不同温度下平衡状态的氢(称为平衡氢,用符号e-H2表示)中仲氢的质量分数。 表8-3 不同温度时平衡氢中仲氢的质量分数 温度/K 20.39 30 40 70 120 200 250 300 在平衡氢 中的仲氢 99.80 97.02 88.73 55.88 32.96 25.97 25.26 25.07
第一节 低温工质的性质 在通常温度时,平衡氢是含75%正氢和25%仲氢的混合物,称为正常氢(或标准氢),用符号n-H2表示。高于常温时,正—仲态的平衡组成不变;低于常温时,正—仲态的平衡组成将发生变化。温度降低,仲氢所占的百分率增加。如在液氢的标准沸点时,氢的平衡组成为0.2%正氢和99.8%仲氢(实际应用中则可按全部为仲氢处理)。 在一定条件下,正氢可以变成仲氢,这就是通常所说的正—仲态转化。在气态时,正—仲态转化只能在有催化剂(触媒)的情况下发生;液态氢则在没有催化剂的情况下也会自发地发生正一仲转化,但转化速率很缓慢。譬如,液化的正常氢最初具有原来的气态氢的组成,但仲氢的百分率χp-H2将随时间而增大,可按下式近似计算:
第一节 低温工质的性质 (8-1) 式中:τ—时间,h。 第一节 低温工质的性质 (8-1) 式中:τ—时间,h。 氢的正—仲转化是一放热反应,转化过程中放出的热量和转化时的温度有关。不同温度下正—仲氢的转化热见表8-4。由表8-4知,氢的正—仲转化热随温度升高而减小。在低温(T<60K)时,转化热实际上几乎恒定,约等于709kJ/kg。 正常氢转化成平衡氢所释放的热量如表8-5所示。由表8-5可见,液态正常氢转化时放出的热量超过汽化潜热(447kJ/kg)。由于这一原因,即使在一个理想的绝热容器中,在正—仲态转化期间储存的液态正常氢亦会发生汽化:在起始的24h内约有18%的液氢要蒸发损失掉,100h后损失
第一节 低温工质的性质 表8-4 氢正—仲转化时的转化热 温度 (K) 转化热 (kJ/kmol) 10 1417.85 60 第一节 低温工质的性质 表8-4 氢正—仲转化时的转化热 温度 (K) 转化热 (kJ/kmol) 10 1417.85 60 1413.53 20 1417.86 80 1382.33 20.39 100 1295.56 30 150 867.38 40 1417.79 200 440.45 50 1417.06 300 74.148
第一节 低温工质的性质 表8-5 正常氢转化成平衡氢时的转化热 温度 (K) 转化热 (kJ/kg) 15 527 100 88.3 第一节 低温工质的性质 表8-5 正常氢转化成平衡氢时的转化热 温度 (K) 转化热 (kJ/kg) 15 527 100 88.3 20.39 525 125 37.5 30 506 150 15.1 50 364 175 5.7 60 335 200 2.06 温度/K 216 250 0.23
第一节 低温工质的性质 将超过40%。为了减少液氢储存中的蒸发损失,通常在液氢产生过程中采用固态催化剂来加速正—仲态转化反应。最常用的固态催化剂有活性炭、金属氧化物、氢氧化铁、镍、铬或锰等。催化转化过程一般在几个不同的温度级进行,如65~80K、20K等。 如果使液态仲氢加热和蒸发,甚至当温度超过300K时,它仍将长时间地保持仲氢态。欲使仲氢重新变回到平衡组成,在存在催化剂(可用镍、钨、铂等)的情况下,要将其加热到1000K。在标准状态下,正常氢的沸点是20.39K,平衡氢的沸点是20.28K;前者的凝固点为13.95K,后者为13.8K。
第一节 低温工质的性质 由于氢是以正、仲两种状态共存,故氢的物性要视其正、仲态的组成而定。正氢和仲氢的许多物理性质稍微有所不同,尤其是密度、汽化热、熔解热,液态的热导率及声速。然而,这些差别是较小的,工程计算中可以忽略不计。但在80~250K温度区间内,仲氢的比热容及热导率分别超过正氢将近20%。
第一节 低温工质的性质 四、氦的性质 氦(He)由相对原子质量为4.003的4He和相对原子质量为3.016的3He两种稳定的同位素组成。这两种同位素的化学性质都不活泼。 氦在空气中的体积含量只有5.24×10-6。天然气中的含氦量要丰富得多,国外(如美国)有的气田气中氦的最高量可达8%,但多数气田气的氦含量都在1%以下。目前,世界氦生产量的94%是从天然气中提取的。 从天然气分离出的氦,其中3He的含量约为1/107;从空气分离中提取的氦,其中3He的含量比前述约大10倍,但也只占1/106。因此,通常情况下讲到氦时实指4He而言。
第一节 低温工质的性质 氦是一种无色、无味的气体,化学性质极其稳定,一般情况下不与任何元素化合。氦具有很低的临界温度,是自然界中最难液化的气体;氦的转化温度也很低,4He的最高转化温度为46K,3He约为39K,在所有的气体中氦的沸点最低,4He的标准沸点是4.224K,3He是3.19lK。在具有高比热容、高热导率及低密度方面,氦气仅次于氢。由于氦的这些热物性,加之它不活泼的惰性,所以氦是一种极好的低温制冷剂。 在所知的气体中,唯有氦气(4He和3He)在压力低于2500kPa、温度降低到接近热力学温度0K(绝对零度)时仍保持液态,这种异常现象同它具有大的零点能有关。例如4He的零点能超过其蒸发热的2倍。
第一节 低温工质的性质 普通的液氦(4H)是一种容易流动的无色液体,表面张力极小,它的折射率(1.02)和气体差不多,因此氦液面不易看见。 第一节 低温工质的性质 普通的液氦(4H)是一种容易流动的无色液体,表面张力极小,它的折射率(1.02)和气体差不多,因此氦液面不易看见。 液氦的汽化潜热比其他液化气体小得多,在标准大气压下4He的汽化潜热为20.8kJ/kg,3He为8.5kJ/kg。因此,仅仅利用液氦汽化的冷量是很不经济的。由于液氦极易汽化,故需要隔热良好的容器来储存。 氦的两种同位素的相平衡特性是不相同的,它们的相图如图8-1和图8-2所示。图上各特性点列于表8-6中。两图中的虚线(即β=0的线)将体积膨胀温度系数β分隔成正值(β>0)和负值(β<0)两个区域,在β>0的区域,液氦加热时体积膨胀,在β<0的区域加热时体积收缩。
第一节 低温工质的性质 图8-1 4He的相图
第一节 低温工质的性质 由图8-1可见,4He相图在形式上与已知的任何其他的物质在许多方面都不相同。首先,如前面提到的,温度接近绝对零度时,液态4He在其本身的蒸气压力下也不凝固。4He没有升华平衡曲线,其固态和气态之间隔着很宽的液态区,这意味着在任何情况下固态和气态都不可能共处于平衡状态,所以4He没有三种聚集态共存的三相点。另一独特的特性是4He存在两个性质显著不同的液体:液氦Ⅰ(HeⅠ)和液氦Ⅱ(HeⅡ)。将两个液相分开的过渡曲线称为λ线。在λ线右边,氦是像任何液体一样的正常状态(有粘性),称为HeⅠ;在λ线左边,氦是一种性质独特的具有超流动性的液体,称为HeⅡ。λ线与沸腾曲线的交点称为λ点,其温度为2.171K、压力为5.036kPa。当压力增大时,λ点
第一节 低温工质的性质 图8-2 3He的相图
第一节 低温工质的性质 向温度降低的方向移动,形成了λ线。λ线与熔化曲线相交于λ′点,该点温度为1.763K,压力为3013.4kPa。这样,4He相图的液态区被λ线分成HeⅠ和HeⅡ两个区域。从HeⅠ变化到HeⅡ称为λ转变(或λ相变)。 表8-6 4He和3He相图上的特性点 4He特性点 温度/K 压力/MPa 3He特性点 c(临界点) 5.2014 0.2275 3.324 0.1165 λ(下λ点) 2.172 0.005063 λ点 ≈0.003 λ′(上λ点) 1.763 3.0134 b(标准沸点) 4.224 0.101325 3.1914 1(β=0) 1.14 0.7093×10-4 0.502 0.2736×10-4 2(β=0) 0.59 2.5331 1.26 4.7623 3(p=pmin) 0.775 2.5291 0.32 2.9303
第一节 低温工质的性质 在λ点温度下呈现的两种不同液相的转变是一种高阶相变。转变时没有潜热的放出或吸收;比体积和比熵值没有变化。在λ点附近,密度曲线无急剧的变化,但伴随有液氦(4He)比热容的突变(图8-3)。 HeⅡ具有其他液体所没有的特性,即超流动性。HeⅡ可看作是具有正常粘度的正常流体和粘度为零的超流体的混合物。正常流体与超流体的比例决定于温度,如图8-4所示。图中ρn是正常流体的密度,ρs是超流体的密度,ρ是HeⅡ的密度。在λ点上,全部流体都是正常的,ρn/ρ=1;而在0K时,全部流体都是超流体,ρs/ρ=1。超流体实际上没有粘度,所以HeⅡ的总粘度随温度降低而减少。超流体可以无阻碍地通过极细的狭缝和小孔,
第一节 低温工质的性质 图8-3 4He及3He饱和液体比热容与T/Tcr的关系
第一节 低温工质的性质 图8-4 HeⅡ中正常流体和超流体密度比值与温度的关系
第一节 低温工质的性质 并在和任何固体表面接触时形成一层薄膜(其厚度约为2×10-5mm),此液膜能够相当快地蠕动到整个固体表面。HeⅡ这种蠕动薄膜现象造成用抽真空方法难于使液氦(4He)达到很低的压力,负压汽化4He所能获得的温度极限不低于0.5K。此外,HeⅡ还具有喷泉效应(或称热-机械效应)、传递热波(即第二声波)以及在HeⅡ和固体表面间存在着额外的界面热阻(卡皮查热阻)等异常特性。 氦凝固时变成一种无色透明的柔软结晶,这时液相和固相之间几乎看不到分界面。
第一节 低温工质的性质 由图8-2可见,3He的液相可一直延伸到绝对零度。压力低于2.93×103kPa时,无论怎样冷却3He都不会凝固;3He也不存在三相点。最近已发现,3He在大约0.003K时存在λ相变。3He的溶解曲线具有反常的特性,当温度低于0.32K时,3He的固-液相平衡系统的温度随压力增加而降低,其溶解曲线的斜率变为负值。根据溶解曲线的这一特异形状,构成了3He绝热凝固制冷的基础。同4He相比,3He沸点低、蒸气压高,在0.003K以上温度不表现出超流动性,因此在同样的条件下减压,3He液体能获得更低温度(约0.2K)。
第一节 低温工质的性质 五、低温工质的p、v、T参数计算 1.理想气体状态方程 第一节 低温工质的性质 五、低温工质的p、v、T参数计算 1.理想气体状态方程 由于低温工质的临界温度很低,因而在常温常压下,其p、v、T参数仍可用理想气体状态方程式 (8-2) 式中,R为气体常数,其值随气体种类而变。当压力及比体积的单位分别用kPa及m3/kg时,R的单位为kJ/(kg·K)。 2.实际气体状态方程 在高压低温时,为了较准确地描述实际气体的特性,应用实际气体状态方程式。
第一节 低温工质的性质 (1)范德瓦尔方程 (8-3) 第一节 低温工质的性质 (1)范德瓦尔方程 (8-3) 式中,a及b为范德瓦尔常数,对于一些常见气体,其值列于表8-7中。表8-7的数值是对1mol而言,在使用时应予以注意 。 (2)比迪-布里吉曼方程 (8-4) 式中,A0、B0、a、b、c为由实验确定的常数,随工质种类而异。在表8-8中给出了几种气体的这些常数值,其中气体量以1mol为单位。在表中指明的范围内,方程的计算结果同实验数值的偏差平均不大于0.18%。
第一节 低温工质的性质 (3)比奈狄特-韦勃-鲁宾方程(BWR方程) (8-5) 第一节 低温工质的性质 (3)比奈狄特-韦勃-鲁宾方程(BWR方程) (8-5) 式中ρ为密度,A0、B0、C0、a、b、c、α、γ为实验常数。BWR方程适用于计算轻烃及其混合物的液体和蒸气的特性数据。各种轻烃的BWR方程的常数可查阅相关文献。 (4)雷德里奇-匡方程 (8-6) 式中,a及b为实验常数。
第一节 低温工质的性质 雷德里奇-匡方程比较简单,只有两个常数,在所有的二常数状态方程中它的精确度最高,是最成功的一个方程。雷德里奇-匡方程的形式与范德瓦尔方程很相似,可求得a、b同临界参数之间的关系如下: (8-7) (8-8) 在已知某种工质的临界参数时即可计算出该工质的雷德里奇-匡方程的常数。
第一节 低温工质的性质 (5)维里方程 根据统计物理的理论,可以推导出用维里系数表示的实际气体的状态方程 (8-9) 第一节 低温工质的性质 (5)维里方程 根据统计物理的理论,可以推导出用维里系数表示的实际气体的状态方程 (8-9) 式中,B、C、D、E等都是温度的函数,且分别称为第一、第二、第三、第四维里系数。维里方程也可表示成如下的形式: (8-10) 式(8-9)同式(8-10)是等效的,但它们的系数不同。
第一节 低温工质的性质 (6)引入压缩性系数的状态方程 第一节 低温工质的性质 (6)引入压缩性系数的状态方程 应用压缩性系数是进行实际气体物性计算的另一种方法。按照这种方法,实际气体的状态方程可表示为 式中,z为压缩性系数。压缩性系数随压力及温度变化的关系可用实验方法确定,或用准确度高的状态方程计算。
第二节 气体液化循环 内 容 提 要 一、概 述 二、节流液化循环 三、带膨胀机的液化循环 四、用氦制冷设备提供冷量的氢液化循环 第二节 气体液化循环 内 容 提 要 一、概 述 二、节流液化循环 三、带膨胀机的液化循环 四、用氦制冷设备提供冷量的氢液化循环 五、天然气液化循环
第二节 气体液化循环 一、概 述 只有当气态物质的温度降低到其临界温度以下时才能液化。所有的低温工质的临界温度远比环境温度低,要使这些气体液化,必须应用人工制冷的方法。 气体液化循环由一系列热力过程组成,其作用在于使气态工质冷却到所需的低温,并补偿系统的冷损,以获得液化气体(或称低温液体)。这不同于以制取冷量为目的的制冷循环。在制冷循环中,制冷工质进行的是封闭循环过程;而对液化循环来说,气态低温工质在循环过程中既起制冷剂的作用,本身又被液化,部分或全部地作为液态产品从低温装置中输出,应用于需要保持低温的过程或用于气体分离过程。显然,气体液化循环是开式循环。
第二节 气体液化循环 1.气体液化的理论最小功 第二节 气体液化循环 1.气体液化的理论最小功 气体液化的可逆循环是指由可逆过程组成的循环,在循环的各过程中不存在任何不可逆损失。采用可逆循环使气体液化所需消耗的功最小,因此称为气体液化的理论最小功。 可设想用不同的方法进行气体液化的可逆循环。如图8-5所示,设欲液化的气体从与环境介质相同的初始状态p1、T1(点1)转变成相同压力下的液体状态p1、T0(点0)。可逆循环可按下述方式进行:先将气体在压缩机中等温压缩到所需的高压p2,即从点1沿1-2线到达点2(p2,T1)所示状态;然后,在膨胀机中等熵膨胀到初压p1,并作外功,即从点2沿2-0线到达点0(p1,T0)而全部液化。此后,液体在需要
第二节 气体液化循环 图8-5 气体液化可逆循环的T-s图
第二节 气体液化循环 低温的过程中吸热汽化并复热到初始状态,如图8-6中的0-3-1过程。不过这一过程不是在液化装置中进行。 第二节 气体液化循环 低温的过程中吸热汽化并复热到初始状态,如图8-6中的0-3-1过程。不过这一过程不是在液化装置中进行。 循环所耗的功等于压缩耗功与膨胀所作外功的差值。因为压缩和膨胀过程都是可逆的,则1-2压缩过程消耗的功最小,2-0膨胀过程所做的功最大。因此,气体液化过程所需消耗的功最小,即为理论最小功,即 (8-11) 将等温压缩耗功wco及绝热膨胀所作外功we的表达式代入上式可得 (8-12) 式(8-12)表明,气体液化的理论最小功仅与气体的性质及初态有关。对不同气体,液化所需的理论最小功不同。表8-9列出了一些气体液化1kg和1L所需的理论最小功。
第二节 气体液化循环 实际上,由于组成液化循环的各过程总是存在不可逆性(如节流、传热温差、散向周围介质的冷损等),因此任何一种可逆循环都是不可能实现的。实际采用的气体液化循环所耗的功,大于理论最小功。然而,可逆循环在作为实际液化循环不可逆程度的比较标准和确定最小功耗的理论极限值方面具有重要价值。 2.气体液化循环的性能指标 在比较或分析气体液化循环时,除理论最小功外,某些表示实际循环经济性的系数也通常采用,如单位能耗w0、性能系数COP、循环效率η、效率ηc等。 单位能耗w0表示获得1kg液化气体需要消耗的功,即 (8-13)
第二节 气体液化循环 式中:w—加工1kg气体所耗的功,kJ/kg(加工气体); 第二节 气体液化循环 式中:w—加工1kg气体所耗的功,kJ/kg(加工气体); Z—液化系数,表示加工1kg气体所获得的液体量,kg/kg(加工气体)。 性能系数为液化气体复热时的单位制冷量q0与所消耗单位功w之比,即 (8-14) 每加工1kg气体得到的液化气体量为Zkg,故单位制冷量可表示为 kJ/kg(加工气体) (8-15) 则 (8-16)
第二节 气体液化循环 用循环效率来度量实际循环的不可逆性和作为评价有关损失的方法。按照定义,循环效率η为实际循环的性能系数(COP)与可逆循环的性能系数(COPc)之比,即 (8-17) η总是小于1。η值越接近于1,说明实际循环的不可逆性越小,经济性越好。 循环效率可以用不同的方式表示。由于相比较的实际循环与可逆循环的制冷量必须相等,因此式(8-17)可写成 (8-18) 即,循环效率可表示为可逆循环所需的最小功与实际循环所消耗的功之比。
第二节 气体液化循环 二、节流液化循环 1.一次节流液化循环 第二节 气体液化循环 二、节流液化循环 1.一次节流液化循环 一次节流循环是最早在工业上采用的气体液化循环。1895年,德国林德和英国汉普逊分别独立地提出了一次节流循环,因此在文献上常称之为简单林德(或汉普逊)循环。 一次节流液化循环的流程图及T-s图如图8-6所示。先讨论没有外部不可逆损失的理论循环,然后再推及实际循环。
第二节 气体液化循环 图8-6 一次节流液化循环流程图及T-s图 Ⅰ—压缩机;Ⅱ—换热器;Ⅲ—节流阀;Ⅳ—气液分离器
第二节 气体液化循环 (1)理论循环 如图8-6所示,常温T、常压p1下的空气(点1′),经压缩机Ⅰ等温压缩至高压p2,在T-s图上简单地用等温线1′-2表示。此后,高压空气在换热器Ⅱ内被节流后的返流空气(点5)冷却至温度T3(点3),这是一个等压冷却过程,在T-s图上用等压线2-3表示。然后高压空气经节流阀Ⅲ节流膨胀至常压p1(点4),温度降低到p1压力下的饱和温度,同时有部分空气液化。在T-s图上节流过程用等焓线3-4表示。节流后产生的液体空气(点0)自气液分离器Ⅳ导出作为产品;未液化的空气(点5)从气液分离器引出,返回流经换热器Ⅱ,以冷却节流前的高压空气,在理想情况下自身被加热到常温T(点l′),其复热过程在T-s图上用等压线5-1′表示。至此完成了一个空气液化循环。
第二节 气体液化循环 如前所述,必须将高压空气预冷至一定的低温,节流后才能产生液体。因此,循环开始需要有一个逐渐冷却的过程,可称为起动过程。图8-7表示一次节流液化循环逐渐冷却过程的T-s图。空气由状态1′等温压缩到状态2,2-4′为第一次节流膨胀,结果使空气的温度降低Δt1。节流后的冷空气返回换热器以冷却高压空气,而自身复热到初始状态1′。高压空气被冷却到状态3′(T3′),其温降为Δt1′。第二次节流膨胀从3′沿3′-4″等焓线进行,节流后达到更低的温度T4″。当它经过换热器复热至初态1′时,可使新进入的高压空气被冷却到更低的温度T3″(状态3″),其温降为Δt2′。接着是从点3″沿3″-4″进行的节流膨胀等。这种逐渐冷却过程继续进行,直到高压空
第二节 气体液化循环 图8-7 一次节流液化循环逐渐冷却过程的T-s图
第二节 气体液化循环 气冷却到某一温度T3(状态3),使节流后的状态进入湿蒸气区域。若此时两股空气流的换热已达到稳定工况,则起动过程结束,空气液化装置开始进入稳定运转状态。 现在讨论一次节流液化理论循环的液化量。设压缩1kg空气时产生Zkg的液体空气,则相应返流空气量为(1-Z)kg。取换热器Ⅱ、节流阀Ⅲ与气液分离器Ⅳ为研究的热力系统,根据系统的热量平衡式 (8-19) 可得 kg/kg (8-20) 因为h1′-h2是温度为T的高压空气由p2节流到p1时的等温节流效应-ΔhT,所以
第二节 气体液化循环 kg/kg (8-21) 循环的单位制冷量即Zkg液态空气回复到初态温度T1′时吸收的热量: kJ/kg (8-22) 第二节 气体液化循环 kg/kg (8-21) 循环的单位制冷量即Zkg液态空气回复到初态温度T1′时吸收的热量: kJ/kg (8-22) 式(8-22)表明,一次节流液化理论循环的单位制冷量在数值上等于高压空气的等温节流效应。 由式(8-21)可见,当-ΔhT为最大值时Z最大。在温度(初压)一定时-ΔhT是压力(终压)p的函数,所以欲使-ΔhT为最大值,则需 (8-23) ΔhT可用热力学微分关系式表示。对于等温过程:
第二节 气体液化循环 积分后得 (8-24) 因此,式(8-23)成立的条件必须是 (8-25) 第二节 气体液化循环 积分后得 (8-24) 因此,式(8-23)成立的条件必须是 (8-25) 上式系转化曲线方程,即微分节流效应αh等于零的方程。由此可见,对应-ΔhT及Z最大值的气体压力p2必通过等温线T和转化曲线的交点。对于空气,若T=303K、p1=98kPa,则p2≈48×103kPa时Z最大。实际采用的压力p2约为(20~22)×103kPa,因为压力过高使设备增加,而装置的制冷量增加比较小。
第二节 气体液化循环 (2)实际循环 一次节流实际循环同理论循环相比存在许多不可逆损失。主要有: 1)压缩机中工作过程的不可逆损失。 第二节 气体液化循环 (2)实际循环 一次节流实际循环同理论循环相比存在许多不可逆损失。主要有: 1)压缩机中工作过程的不可逆损失。 2)换热器中不完全热交换的损失。即返流气体只能复热到T1(图8-7)。 3)环境介质传热给低温设备引起的冷量损失,也称跑冷损失。 由于这些损失的存在,使循环的液化系数减小,效率降低。下面进行实际循环的分析和计算。
第二节 气体液化循环 设不完全热交换损失为q2[kJ/kg(加工空气)],它由温差ΔT=T1′-T1确定(图8-7)。通常假定返流空气在T1′与T1之间的比定压热容是定值,则q2=(1-Zpr)cpl(T1′-T1)。设跑冷损失为q3,其值与装置的容量、绝热情况及环境温度有关。至于压缩机的不可逆损失,一般由压缩机的效率予以考虑。 仍取图8-6中点画线包围的部分为热力系统,加工空气量为1kg,得下列热平衡方程式: 而 由此可得实际液化系数
第二节 气体液化循环 kg/kg (8-26) 实际循环的单位制冷量 kJ/kg (8-27) 第二节 气体液化循环 kg/kg (8-26) 实际循环的单位制冷量 kJ/kg (8-27) 从式(8-26)、(8-27)可见,实际循环的液化系数及单位制冷量的大小取决于-ΔhT与∑q的差值;若实际循环的等温节流效应-ΔhT不能补偿全部冷损∑q,则不可能获得液化气体。 若压缩机的等温效率用ηT表示,则对1kg气体的实际压缩功为 kJ/kg (8-28)
第二节 气体液化循环 产生1kg液化空气的能耗称为实际单位能耗 kJ/kg (8-29) 循环实际性能系数 (8-30) 循环效率 第二节 气体液化循环 产生1kg液化空气的能耗称为实际单位能耗 kJ/kg (8-29) 循环实际性能系数 (8-30) 循环效率 式中,可逆液化循环的性能系数(按图8-6所示状态)为 (8-31) 所以 (8-32)
第二节 气体液化循环 实际循环的性能指标与循环的主要参数如高压p2、初压p1、进换热器时高压空气的温度T2有密切关系。理论分析表明,对一次节流液化循环,为改善循环的性能指标,可提高p2,一般p2≈20×103kPa(图8-8);在保证所需单位制冷量及液化温度的条件下,适当提高初压p1,从而减小节流的压力范围(图8-9);采取措施降低高压空气进换热器时的温度,从而提高液化系数(图8-10)。
第二节 气体液化循环 图8-8 一次节流液化循环的特性
第二节 气体液化循环 图8-9 节流循环的COP-p1-p2关系图
第二节 气体液化循环 图8-10 进换热器时高压空气的温度T2与-ΔhT的关系
第二节 气体液化循环 2.有预冷的一次节流液化循环 第二节 气体液化循环 2.有预冷的一次节流液化循环 降低换热器热端高压空气温度可提高循环的经济性。为此,除利用节流后的低压返流空气外,还可采用外部冷源预冷,以降低进换热器时高压空气的温度。对于空气节流液化循环,一般采用氨或氟利昂制冷机组进行预冷,可使进入主换热器的高压空气温度降至-40~-50℃。采用这一措施组成的节流循环称为有预冷的节流液化循环。 图8-11给出了预冷的一次节流液化循环的系统图及T-s图。 设加工1kg空气时生产Zpr kg的液态空气,外部制冷蒸发器供给的冷量为q0c。将装置分为ABCD与CDEF两个热力系统,其跑冷损失分别为q3Ⅰ与q3Ⅱ,换热器Ⅰ和Ⅱ的不完全热交换损失分别为q2Ⅰ和q2Ⅱ,则有
C—压缩机;Ⅰ—预换热器;Ⅱ—主换热器; Ⅲ—制冷设备的蒸发器;Ⅳ—节流阀;Ⅴ—气液分离器 第二节 气体液化循环 图8-11a 有预冷的一次节流液化循环流程图 C—压缩机;Ⅰ—预换热器;Ⅱ—主换热器; Ⅲ—制冷设备的蒸发器;Ⅳ—节流阀;Ⅴ—气液分离器
第二节 气体液化循环 图8-11b 有预冷的一次节流液化循环的T-s图
第二节 气体液化循环 由ABCD系统的能量平衡得 (8-33) 因 所以 (8-34) 由CDEF系统的能量平衡得 (8-35) 第二节 气体液化循环 由ABCD系统的能量平衡得 (8-33) 因 所以 (8-34) 由CDEF系统的能量平衡得 (8-35) 整理得 (8-35a) 联解式(8-34)、(8-35)可求得循环的实际液化系数,即
第二节 气体液化循环 kg/kg (8-36) 式中, 。q3是整个系统的跑冷损失。 循环的实际单位制冷量 kJ/kg (8-37) 第二节 气体液化循环 kg/kg (8-36) 式中, 。q3是整个系统的跑冷损失。 循环的实际单位制冷量 kJ/kg (8-37) 将q2Ⅱ代入式(8-35)可得循环实际液化系数的另一表达形式 (8-38) 式中,-ΔhT4是在T4温度下空气压力从p2降低到p1的等温节流效应。
第二节 气体液化循环 因此在p1、p2与T2相同的情况下,有预冷的一次节流循环的实际单位制冷量及液化系数比没有预冷的一次节流循环大,制冷量所大的值即为预冷设备输入的冷量q0c;液化系数的增大是由于在较低温度(T4)下的等温节流效应增加了,即-ΔhT4>-ΔhT,同时分母的(h8′-h0)<(h1′-h0),而冷损同样是比较小的。由此可见,q0c作为一种附加冷量,借助主换热器及节流阀转化到更低的温度水平,增加了循环的单位制冷量和液化系数。而q0c是在较高的温度(-40~-50℃)下产生的冷量,它所需的能量消耗比起液化温度下产生相同冷量的能耗要小得多,因此采用预冷提高了循环的经济性。
第二节 气体液化循环 制冷设备供给的冷量可将q2Ⅱ与h8的关系代入式(8-33)求得 kJ/kg (8-39) 第二节 气体液化循环 制冷设备供给的冷量可将q2Ⅱ与h8的关系代入式(8-33)求得 kJ/kg (8-39) 有预冷的一次节流液化循环的能耗为空气压缩机能耗wa,pr和制冷机能耗wR,pr之和,即 kJ/kg (8-40) wR,pr可由下式求得 (8-41) 式中,q0,pcr为单位功耗获得的预冷冷量(kJ/kJ)。按文献推荐:以氨为工质的制冷机,预冷温度T4=288K时,q0,pcr=1.165kJ/kJ。因此产生lkg液态空气的单位能耗为
第二节 气体液化循环 (8-42) 图8-12示出当T=303K、p1=98kPa、∑q=l.5kJ/kg(加工空气)、预冷温度为288K、ηT=0.59时,不同高压下有预冷的一次节流循环的特性曲线。比较图8-8和图8-12可以看出,在相同情况下,采用预冷后循环的实际液化系数Zpr、性能系数COP提高了,而单位能w0,pr降低了,而相应地循环效率η增加。
第二节 气体液化循环 图8-12 有预冷的一次节流液化循环特性
第二节 气体液化循环 采用预冷之所以可获得较高的循环效率,主要是减少了换热器内高、低压空气的温差,使传热过程的不可逆性减少,从而提高了循环的效率。图8-13所示为有预冷和没有预冷时一次节流循环换热器中高、低压空气的温差变化示意图。图的纵坐标代表换热器任一截面上两股气流传递的热量,横坐标代表气流的温度。根据热平衡方程可作出换热器各截面传递的热量与温度的关系曲线。图中7-1线为低压空气吸收的热量与温度的关系曲线;2-5′线表示没有预冷时高压空气放出的热量与温度的关系曲线。2-5′线与7-1线之间与横坐标平行的线段即为某截面上高、低压空气的温差。在预冷时,高压空气在预冷换热器中冷却到T3后进入制冷设备的蒸发器,温度进一步降至T4,因而
第二节 气体液化循环 图8-13 有预冷与没有预冷时节流循环换热器中 高、低压空气温差变化示意图
第二节 气体液化循环 进主换热器Ⅱ的高压空气温度为T4。4-5线与7-8线之间与横坐标平行的线段,即为主换热器中高、低压空气的温差。显然,其温差减少了,从而减少了不可逆损失。与此同时,还降低了高压空气节流前的温度,即T5<T5′,因而使液化系数增加。
第二节 气体液化循环 三、带膨胀机的液化循环 1.克劳特液化循环 2.柯林斯氦液化循环 3.海兰德液化循环 4.卡皮查液化循环
第二节 气体液化循环 1.克劳特液化循环 (1)工作过程及性能指标 第二节 气体液化循环 1.克劳特液化循环 (1)工作过程及性能指标 1902年,法国的克劳特首先实现了带有活塞膨胀机的空气液化循环,其流程图及T-s图如图8-14所示。 1kg温度T1'、压力p1(点1')的空气,经压缩机C等温压缩到p2(点2),并经换热器Ⅰ冷却至T3(点3)后分成两部分:一部分Vekg的空气进入膨胀机E膨胀到p1(点4),温度降低并作外功,而膨胀后气体与返流气汇合流入换热器Ⅱ、Ⅰ以预冷高压空气;另一部分Vth=(1-Ve)kg的空气经换热器Ⅱ、Ⅲ冷却至温度T5(点5)后,经节流阀节流到p1(点6),获得Zprkg液体,其余(Vth-Zpr)kg饱和蒸气返流经各换热器冷却高压空气。
第二节 气体液化循环 图8-14 克劳特液化循环流程图及T-s图
第二节 气体液化循环 设系统的跑冷损失为q3,不完全热交换损失为q2。由图中ABCD热力系统的热平衡方程得 因 所以 从而可以得实际液化系数 第二节 气体液化循环 设系统的跑冷损失为q3,不完全热交换损失为q2。由图中ABCD热力系统的热平衡方程得 因 所以 从而可以得实际液化系数 kg/kg (8-43) 循环的单位制冷量 (8-44)
第二节 气体液化循环 在理想情况下,气体在膨胀机中的膨胀过程是等熵过程,如图8-14中T-s图中的3-4s线。实际上,由于气体在膨胀机中流动时存在多种能量损失,外界的热量也不可避免地要传入,因此膨胀机的实际膨胀过程是有熵增的过程,如图8-14流程图中的3-4线所示。 衡量气体在膨胀机中实际膨胀过程偏离等熵膨胀过程的尺度,称为膨胀机绝热效率ηs,它可用膨胀机中膨胀气体实际比焓降与等熵膨胀比焓降之比来表示,即 (8-45) 因此式(8-43)、(8-44)也可写为 (8-46)
第二节 气体液化循环 kJ/kg (8-47) 将式(8-46)、(8-47)与式(8-26)、(8-27)比较可以看出,克劳特循环比一次节流循环的实际液化系数和单位制冷量大。在克劳特循环中,制冷量主要由膨胀机产生,其次为等温节流效应。 克劳特循环消耗的功应为压缩机消耗的功与膨胀机回收功的差,即 kJ/kg (8-48) 式中,ηm为膨胀机的机械效率。 由式(8-46)、(8-48)即可求出制取1kg液态空气所需的单位能耗,即w0,pr=wpr/Zpr。
第二节 气体液化循环 分析以上各式可知,高压压力p2、进入膨胀机的气量Ve以及进膨胀机的高压空气温度T3不仅影响循环的性能指标Zpr、q0,pr、wpr等,还将影响系统中换热器的工况。 (2)循环性能指标与主要参数的关系 当p2与T3不变时,增大膨胀量Ve,膨胀机产冷量随之增大,循环的单位制冷量及液化系数相应增加。但Ve过分增大,通过节流阀的气量就太少,会导致冷量过剩,使换热器Ⅱ偏离正常工况。 当Ve与T3一定时,提高高压压力p2,等温节流效应和膨胀机的单位制冷量均增大,液化系数相应增加。但过分提高p2会造成冷量过剩,冷损增大,并因冷量被浪费掉而使能耗增大。
第二节 气体液化循环 当p2与Ve一定时,提高膨胀前温度T3,膨胀机的比焓降即单位制冷量增大,膨胀后气体的温度T4也同时提高,而节流部分的高压空气出换热器Ⅱ的温度(T8)和T4有关,若T3太高,膨胀机产生的较多冷量不能全部传给高压空气,导致冷损增大,甚至破坏换热器Ⅱ的正常工作。 在上述讨论中,都假定两个参数不变而分析某一参数对循环性能的影响。但是在实际过程中三个参数之间是相互制约的,因此在确定循环系数时几个因素应同时加以考虑,才能得到最佳值。 图8-15示出制取lkg液空时p2、Vth、及w0,pr的关系曲线。曲线是在换热器Ⅰ、Ⅱ热端温差为10K、跑冷损失q3=8.37kJ/kg(加工空气)、压缩机等温效率ηT=0.6、膨胀机
第二节 气体液化循环 图8-15 克劳特空气液化循环的p2、Vth与w0,pr的关系曲线
第二节 气体液化循环 绝热效率ηs=0.7、膨胀机机械效率ηm=0.7及膨胀后压力p1=98kPa的情况下作出的。从图可以看出,在克劳特空气液化循环中,当压力p2较高和节流量Vth值较小时单位能耗较低。 图8-16示出克劳特空气液化循环中最佳的膨胀前温度T3及节流量Vth与高压压力p2的关系曲线,作图条件与图8-15相同。
第二节 气体液化循环 图8-16 最佳膨胀机进气温度T3和节流量Vth 与高压p2的关系曲线
第二节 气体液化循环 (3)克劳特液化循环中换热器的温度工况 第二节 气体液化循环 (3)克劳特液化循环中换热器的温度工况 选择克劳特液化循环参数时,不仅从循环的能量平衡考虑,还需要满足换热器正常换热工况的要求。正常换热工况是指在换热器任一截面上热气体与冷气体之间的温差必须为正值,且温差分布比较合理,最小温差不低于某一定值(通常为3~5K)。冷、热气体间的最小温差可能发生在各换热器的不同截面上,这取决于循环的流程和气体的热力性质。 换热器温差工况可用热量-温度图(mΔh-T图)表示。该图可以反映出气体不同截面的温度变化,也可以表示各截面上冷、热气流之间的温差。
第二节 气体液化循环 图8-17 换热器Ⅱ中高、低压空气温差变化
第二节 气体液化循环 现在讨论影响换热器温度工况的因素。图8-17表示克劳特循环的第Ⅱ换热器。压力p2的正流空气量为Vthkg,进、出口温度分别为T3和T8,某一段返流气的平均比热容为。若不考虑跑冷损失,在换热器任一截面b-b一侧的热平衡方程式为 (8-49) 式中Tb,p1、Tb,p2分别为b-b截面上返流与正流空气的温度。令 式(8-49)可转换为
第二节 气体液化循环 因而 (8-50) 从式(8-50)可以看出,换热器任一截面的温差(Tb,p2-Tb,p1)与热端温差(T3-T9)或冷端温差(T8-T4)、气流量比β及气流平均比热容rc有关,亦即和循环参数的选择有关。对于克劳特液化循环,由于部分加工空气Ve进入膨胀机,因而在气体分流后的换热器Ⅱ中,正流空气量减少,返流气与正流气流量比β较大,可能出现正流空气过冷,使冷、热气流之间的温差减少。其循环参数选择不当,在mΔh-T图上会出现某个局部温差小于设计所允许的最小温差,甚至出现“零温差”或“负温差”的现象。“负温差”在
第二节 气体液化循环 实际的换热器中是不存在的,这只是表明换热器的温度工况被破坏,已经不能正常进行工作。因此,在进行克劳特液化循环参数选择时,必须校核换热器的温度工况。 换热器中气流流量比的选择,实际上就是克劳特液化循环膨胀量的选择,是有一定范围的。
第二节 气体液化循环 2.柯林斯氦液化循环 1946年,美国柯林斯首先提出了采用多级膨胀机和节流阀结合的氦液化循环,称柯林斯循环。图8-18为一种典型的具有两台膨胀机的柯林斯循环流程图。它有四个冷却级,其中温度最高的第一级由液氮预冷,温度最低的一级采用节流阀,其余为两台工作于不同温度的膨胀机。应指出,柯林斯循环不用液氮预冷同样也能产生液氦,但在通常情况下仍采用液氮预冷,以提高循环的液化系数。 计算多级膨胀机循环时必须合理地选择级数,确定每级的温度及膨胀机气量。假设在由多台膨胀机组成的氦液化循环中,氦气从常温T1经n个温度位Ti-1、Ti、Ti+1等的冷却级冷却到T0;每一级有Eikg的气量进入膨胀机,从氦气
第二节 气体液化循环 图8-18 有液氮预冷和两台膨胀机 的氦液化循环流程图
第二节 气体液化循环 图8-19 两相邻冷却级流程示意图
第二节 气体液化循环 中带走qi的热量。两个相邻冷却级i级和i-1级如图8-19所示。在最末的冷却级,冷却至T0的一部分氦气Z kg被液化,并从循环中排出,而在各个膨胀机中膨胀的气体全部返回至压缩机。若压缩机将1kg氦气从p1压缩到p2,显然 (8-51) 在第i级,实际单位能耗可视为总能耗的一小部分,且正比于Ei,即 (8-52) 式中,Δhs,i、ηs,i分别为第i级膨胀机的等熵焓降及绝热效率。
第二节 气体液化循环 假设氦气为理想气体,没有不可逆热交换损失和跑冷损失,则循环中第i级的能量平衡方程经整理可表示为 (8-53) 第二节 气体液化循环 假设氦气为理想气体,没有不可逆热交换损失和跑冷损失,则循环中第i级的能量平衡方程经整理可表示为 (8-53) 式中,Ti'、Ti分别为第i级膨胀机的进、出口温度。 氦气在膨胀机中等熵膨胀后的温度为 (8-54) 膨胀机的绝热效率为 (8-55) 从式(8-54)、(8-55)中消去Ts,i,可得 (8-56)
第二节 气体液化循环 将Ti'代入式(8-53)得 (8-57) 式中 (8-58) 其中ai为无量纲量,称为膨胀系数。 第二节 气体液化循环 将Ti'代入式(8-53)得 (8-57) 式中 (8-58) 其中ai为无量纲量,称为膨胀系数。 由式(8-57)可确定第i级膨胀机的膨胀量为 (8-59) 可见,Ei是液化系数Z、膨胀系数ai及相邻级温度比(Ti-1/Ti)的函数。 进入循环中n台膨胀机的总气量为 (8-60)
第二节 气体液化循环 从式(8-52)知,每个冷却级的w0,i正比于Ei。可见在液化系数Z不变的情况下,当进入所有膨胀机的气量∑Ei最小时,该循环所需的功耗最小。因此,应在Tn至T0温度区选择每级提供冷量的温度Ti,使得在这些温度下∑Ei为最小值。为此,将式(8-60)逐项对Ti求导,并令其导数等于零,可得到一恒定比值A (8-61) 将上式中所有n项连乘可求得常数A (8-62)
第二节 气体液化循环 由式(8-59)、(8-62)可得到最佳条件下第i级膨胀机气量 (8-63) 第二节 气体液化循环 由式(8-59)、(8-62)可得到最佳条件下第i级膨胀机气量 (8-63) 为了确定膨胀机的出口温度,可将式(8-61)中最前面的i项连乘,得到 (8-64) 从式(8-62)、(8-64)消去常数A,可求得每级膨胀机出口温度的方程式 (8-65)
第二节 气体液化循环 如果所有膨胀机的膨胀比p2/p1和绝热效率ηs,i相同,则所有的ai也相同,即a=a1=a2=…=an。这时 第二节 气体液化循环 如果所有膨胀机的膨胀比p2/p1和绝热效率ηs,i相同,则所有的ai也相同,即a=a1=a2=…=an。这时 (8-66) (8-67) 由式(8-66)知,在使用多台膨胀机的液化循环中,当膨胀机的ηs相同时,最经济的情况是每台膨胀机的膨胀量相同;膨胀机的级数愈多,其总气量∑Ei kg与液化量Z kg之比∑Ei/Z愈小,循环的单位能耗则愈低。图8-20绘出了计算机得到的采用1~4台膨胀机制冷时,对于不同冷却终温T0的膨胀机的相对气耗量(∑Ei/Z)。作图条件:氦气初温T1=300K,膨胀比p2/p1=20,绝热效率ηs=0.75。由图可
不同级数下膨胀机的相对气耗量∑Ei/Z与出口温度T0的关系 第二节 气体液化循环 图8-20 在膨胀比p2/p1=20、ηs=0.75、T1=300K时 不同级数下膨胀机的相对气耗量∑Ei/Z与出口温度T0的关系
第二节 气体液化循环 看到,当n<2,即少于两台膨胀机时,∑Ei/Z很大,循环的经济性差;当n=3时,能耗指标下降到2/3;当n=4时,能耗指标还可以下降一些,再进一步增加膨胀机台数就没有必要了。图中还画出∑Ei/Z最小时膨胀机台数n0的曲线(虚线)。该曲线表明,膨胀机最多可以用四台,再增加台数时收效甚微。 应当指出,上述计算没有考虑不完全热交换损失和跑冷损失。若计算时考虑这些损失,则取用的ai值比按公式求得的计算值小10%~20%。 在实际的柯林斯氦液化循环中,第一级用液氮预冷代替膨胀机,末级降温用节流阀实现,两者都起了与膨胀机相同的降温制冷作用。因此,冷却级数n的含义不限于上述
第二节 气体液化循环 推导中所指的膨胀机台(级)数,还应包括液氮预冷、节流降温两种制冷方式。 第二节 气体液化循环 推导中所指的膨胀机台(级)数,还应包括液氮预冷、节流降温两种制冷方式。 在较低温度下,氦气性质与理想气体相差甚大,所以按式(8-65)、(8-67)确定末级冷却温度时误差较大。在实际的循环计算中,T0是根据获得最佳液化率所要求的进末级换热器热端的温度确定;Tn为经液氮槽冷却的氦气温度,常压液氮预冷时能确保Tn=80K。 当确定多级膨胀机液化循环的膨胀机台数及其工作温度后,可按下列步骤进行循环的热力计算:由末级换热器热平衡计算循环的液化系数;在换热器正常工作条件下,从每级的热量平衡计算中求出进入任一级膨胀机的气量。
第二节 气体液化循环 图8-21示出包括膨胀机EⅡ与换热器Ⅴ和Ⅵ的单级计算流程图。图上标号与图8-18相对应。设加工氦气量为1kg,进入上一温度级膨胀量为E1kg,则(1-E1)kg为进入这一级的氦气量。q3i为一级的跑冷损失。热平衡方程为 (8-68) 进EⅡ的膨胀量E2kg为 (8-69)
第二节 气体液化循环 图8-21 多级膨胀机液化循环 单级计算流程
第二节 气体液化循环 确定每一级膨胀机的膨胀量时必须保证每级分流后的换热器正常工作,即按mΔh-T图求返流量与正流量之比β值。对于图8-21所示单级计算流程 (6-70) 联立式(8-69)、(8-70),求出进EⅡ的膨胀量E2。如果给出级的热端温度,对换热器工况进行分析、校核,而不需在mΔh-T图上进行图解计算。
第二节 气体液化循环 3.海兰德液化循环 从克劳特循环可知,提高循环压力p2可降低单位能耗;提高膨胀前温度,可增加绝热比焓降和绝热效率。因此,海兰德于1906年提出了带高压膨胀机的气体液化循环,即海兰德循环,实质上它是克劳特循环的一种特殊情况。 在海兰德循环(图8-22)中,气体被等温压缩至(16~20)×103kPa的高压,且一部分高压气体Ve不经预冷而直接进入膨胀机;另一部分Vth=(1-Ve)进入换热器Ⅰ、Ⅱ,冷却后节流产生液体。 海兰德循环的液化系数Zpr、单位制冷量q0,pr和功耗wpr的计算式与克劳特循环相似,如式(8-46)至(8-48)所示。
第二节 气体液化循环 图8-22 海兰德液化循环流程及T-s图 C—压缩机; F—膨胀机; G—节流阀; Ⅰ、Ⅱ—换热器; Ⅲ—气液分离器。
第二节 气体液化循环 确定海兰德循环最佳参数的方法亦和克劳特循环类似。所不同的是,海兰德循环进膨胀机气体的温度是室温,已经确定,因而只需对高压压力p2和膨胀量Ve进行热平衡和换热器温差校核计算,即可确定最佳参数。 为了增加循环的液化系数,并使单位能耗降低,也可以采用预冷使进膨胀机的气体温度降低,如液化空气时预冷至2~4℃为宜。海兰德循环通常用于生产液态产品的小型装置。
第二节 气体液化循环 4.卡皮查液化循环 1937年,前苏联的卡皮查实现了带有高效率透平膨胀机的低压液化循环,即卡皮查循环。其流程图及T-s图如图8-23所示,主要用于大型空气分离装置。 空气在透平压缩机中等温压缩到500~600kPa,经换热器R冷却到T3(点3)后分为两部分,大部分空气进透平膨胀机TE膨胀到100kPa,温度降到T4(点4),而后进入冷凝器C的管内并输出冷量,使由膨胀机前引入冷凝管间的小部分压力为500~600kPa的空气液化(点5)。冷凝液经节流阀TV节流至100kPa,节流后产生的液体作为产品放出,其余的饱和蒸气同膨胀机出来的冷空气混合,经冷凝器C和换热器R回收冷量后排出。
第二节 气体液化循环 图8-23 卡皮查液化循环流程与T-s图 B—压缩机;C—冷凝器;R—换热器;TE—膨胀机;TV—节流阀;
第二节 气体液化循环 卡皮查循环也是克劳特循环的一种特殊情况。它采用的压力较低,其等温节流效应与膨胀机绝热比焓降均较小,循环的液化系数不可能超过5.8%。卡皮查低压循环之所以能实现,是因为采用了绝热效率高的透平膨胀机(通常ηs可达0.8~0.82),以及采用了效率高的蓄冷器(或可逆式换热器)进行换热并同时清除空气中的水分和二氧化碳。 卡皮查循环的液化系数、单位制冷量和功耗的计算与克劳特循环相似,参见式(8-36)、(8-37)和(8-42)。 卡皮查低压循环流程简单,由于采用透平机械,单位能耗小、金属耗量及初投资降低、操作简单,广泛用于大、中型空气分离装置。
第二节 气体液化循环 四、用氦制冷设备提供冷量的氢液化循环 第二节 气体液化循环 四、用氦制冷设备提供冷量的氢液化循环 这类循环是用氦作为制冷工质,在带膨胀机的氦制冷循环和斯特林循环的制冷机中获得氢冷凝的温度,通过表面换热使氢液化。 图8-24为膨胀机型氦制冷氢液化循环流程图及特性曲线。压缩到l×103~2×103kPa的氦气经换热器Ⅰ、液氮槽Ⅱ及换热器Ⅲ冷却后,在膨胀机E中膨胀降至能使氢冷凝的温度,然后经冷凝器Ⅶ、换热器Ⅲ和Ⅰ复热后返回氦压缩机。原料氢通过换热器Ⅳ、液氮槽Ⅴ、换热器Ⅵ冷却后在冷凝器Ⅶ中被氦气冷凝,并节流进入液氢槽Ⅷ,末液化的氢气复热后返回氢压缩机。
第二节 气体液化循环 图8-24a 氦制冷氢液化循环流程图 B—压缩机; E—膨胀机; G—节流阀; Ⅰ、Ⅲ—换热器; Ⅳ、Ⅵ—换热器; 第二节 气体液化循环 图8-24a 氦制冷氢液化循环流程图 B—压缩机; E—膨胀机; G—节流阀; Ⅰ、Ⅲ—换热器; Ⅳ、Ⅵ—换热器; Ⅱ、Ⅴ—液氮槽; Ⅶ—冷凝器; Ⅷ—液氢槽。
第二节 气体液化循环 图8-24b 氦制冷氢液化循环单位能耗与氦、氢压力的关系
第二节 气体液化循环 由图8-24中的循环特性曲线可知,下面三条曲线(正常液氢)比较靠近,说明氦气压力对产生正常液氢的单位能耗影响不明显;氢的压力在0.3×103~1×103kPa时,曲线比较平直,表明在此压力范围内单位能耗几乎与氢压力无关。生产液态仲氢时单位能耗(上面一条曲线)比生产正常液氢要增加50%左右,而大多数循环中前者比后者只增加20%~30%。这种循环也可以用氖作工质使氢液化。
第二节 气体液化循环 五、天然气液化循环 天然气中甲烷的含量通常约在80%以上,经预处理后甲烷的相对含量还要高。因此天然气的性质与甲烷相近。以甲烷为主的天然气液化后的体积只有原来的1/625左右,因此,对天然气进行液化是大量存储和远距离输送的一种经济而有效的方法。 目前天然气液化循环主要有三种类型:复叠式制冷液化循环,混合制冷剂液化循环和带膨胀机的液化循环。
第二节 气体液化循环 1.复叠式制冷液化循环 这是一种常规的循环,它由若干个在不同低温下操作的蒸气压缩制冷循环复叠组成。对于天然气的液化,一般是由丙烷、乙烯和甲烷为制冷剂的三个制冷循环复叠而成。它们的制冷温度分别为-45℃、-100℃及-160℃。该循环的原理流程如图8-25所示。净化后的原料天然气在三个制冷循环的冷却器中逐级地被冷却、冷凝液化并过冷,最后用低温泵将液化天然气(LNG)送至贮槽。
第二节 气体液化循环 图8-25 复叠式制冷液化循环原理流程
第二节 气体液化循环 复叠式液化循环的工作压力较低,制冷剂在液态下不可逆性小,对于标准状态下1m3的原料气,实际单位能耗w0,pr约为0.32kW·h/m3原料气,是目前热效率最高的一种天然气液化循环。此外,制冷循环与天然气液化系统各自独立,相互影响少,操作稳定。但由于该循环机组多,流程系统复杂,对制冷剂纯度要求严格(否则将会引起工况变化),且不适用于含氮量较多的天然气,因此1970年以后这种循环在天然气液化装置上已很少应用。
第二节 气体液化循环 2.用混合制冷剂制冷的液化循环 第二节 气体液化循环 2.用混合制冷剂制冷的液化循环 这种循环属自动复叠式循环。混合制冷剂一般是碳氢化合物和氮等五种以上组分的混合物,其组成根据原料气的组成和压力而定。混合制冷剂的大致组成列于表8-10。工作时利用多组分混合物中重组分先冷凝、轻组分后冷凝的特性,将它们依次冷凝、节流。蒸发得到不同温度级的冷量,使天然气中对应的组分冷凝并最终全部液化。根据混合制冷剂是否与原料天然气相混合,分为闭式和开式两类循环。 表8-10 天然气液化及分离技术所用混合制冷剂大致组成 组 分 氮 甲烷 乙烯 丙烷 丁烷 戊烷 体积/% 0~3 20~32 34~44 12~20 8~15 3~8
第二节 气体液化循环 闭式循环流程图如图8-26所示。制冷循环与天然气液化过程分开,自成一独立的制冷系统。被压缩的混合制冷剂,经水冷却后使重烃液化,在分离器1中进行气液分离。液体在换热器Ⅰ中过冷后,经节流并与返流的制冷剂混合,在换热器Ⅰ中冷却原料气和其他液体;气体在换热器Ⅰ中继续冷却并部分液化后进入分离器2。经气、液分离后进入下一级换热器Ⅱ,重复上述过程。最后,在分离器3中的气体主要是低沸点组分氮和甲烷,它们经节流并在换热器Ⅳ中使液化天然气过冷,然后经各换热器复热后返回压缩机。原料天然气经冷却并除去水分和二氧化碳后,依次进入换热器Ⅰ、Ⅱ和Ⅲ逐级冷却。换热器之间有气液分离器,将冷凝的液体分出。在换热器Ⅲ中原料气冷凝后经节
第二节 气体液化循环 图8-26 闭式混合制冷剂液化循环流程图 TC—温度控制;PC—压力控制;LC—液面控制;HC—手动遥控
第二节 气体液化循环 流进入分离器6。液化天然气经换热器Ⅳ过冷后输出;节流后的蒸气依次经换热器Ⅳ直至Ⅰ复热后流出装置。 第二节 气体液化循环 流进入分离器6。液化天然气经换热器Ⅳ过冷后输出;节流后的蒸气依次经换热器Ⅳ直至Ⅰ复热后流出装置。 开式循环的特点是混合制冷剂与原料气混合在一起,其流程如图8-27所示。原料天然气经过冷却并除去水分和二氧化碳与混合制冷剂混合,依次流过各级换热器及气-液分离器,在天然气逐渐冷凝的同时,也把所需的制冷剂组分逐一地冷凝分离出来,然后又按沸点的高低将这些冷凝组分逐级蒸发汇集一起构成一个制冷循环。开式循环运行中利用各段的分凝液可及时地补充循环制冷剂,免去供启动、停机时存放混合制冷剂的贮罐,但其启动时间较长,且操作困难,因此是一种尚待完善的循环。
第二节 气体液化循环 图8-27 开式混合制冷剂液化循环流程图 TC—温度控制;PC—压力控制;LC—液面控制;HC—手动遥控
第二节 气体液化循环 同复叠式液化循环相比,混合制冷剂液化循环具有流程简单、机组少、初投资少、对制冷剂纯度要求不高等优点。其缺点是能耗比复叠式高20%左右;对混合制冷剂组分的配比要求严格,流程计算困难,必须提供各组分可靠的相平衡数据和物性参数。 为了降低能耗,出现了一些改进型的混合制冷剂液化循环。目前应用最多的是采用丙烷、乙烷或氨作前级预冷的混合制冷剂液化循环,将天然气预冷到238~223K后,再用混合制冷剂冷却。这时混合制冷剂只需氮、甲烷、乙烷和丙烷四种组分,因而显著地缩小了混合制冷剂的沸点范围。同时,在预冷阶段又保持了单组分制冷剂复叠式循环的优点,提高了热力学效率。
第二节 气体液化循环 需要指出,混合制冷剂的各组分一般都是部分地或是全部地由天然气原料来提供或补充。因此,当天然气含甲烷较多且其他制冷剂组分的供应又不太方便时,则不宜选用此类循环。 除在天然气液化及分离技术中使用混合制冷剂液化循环外,近年来在稀有气体的提取、工业尾气的低温分离及氮和氢的液化等方面也试用自动复叠式制冷剂液化循环。但随着冷却温度级的不同,混合制冷剂的组成也就不同。
第二节 气体液化循环 3.带膨胀机的液化循环 这种循环利用气体在膨胀机中作外功的绝热膨胀来提供天然气液化所需的冷量。图8-28为直接式膨胀机循环流程图。它直接利用输气管道来提供天然气体在膨胀机中膨胀来制取冷量,使部分天然气冷却后节流液化。循环的液化系数主要取决于膨胀机的膨胀比,一般为7%~15%。这种循环特别适用于天然气输送压力较高,而实际使用压力较低且中间需要降压的场合。其突出的优点是能耗低、流程简单、原料气的预处理量少。由于在膨胀过程中天然气中一些高沸点组分会冷凝析出,致使膨胀机在带液工况下运行,故设计比较困难。
第二节 气体液化循环 图8-28 直接式膨胀机天然气液化循环流程
第二节 气体液化循环 图8-29所示的循环采用一个与天然气液化过程分开的具有两级氮膨胀的制冷循环来供给天然气液化所需的冷量。原料气经预纯化设备、换热器Ⅰ,在重烃分离出高碳化合物后进入换热器Ⅱ继续冷却,而后流入氮气提塔。在塔底得到液化天然气,经换热器Ⅲ过冷后去贮槽。在塔上部得到含部分甲烷的氮气,它流入氮-甲烷分离塔使氮与甲烷分离,在塔的下部获得纯液甲烷并送进贮槽,在塔上部流出的氮气与从换热器Ⅲ来的膨胀后的氮气汇合,经换热器Ⅱ、Ⅰ复热后流入循环压缩机。压缩后的氮气经换热器Ⅰ预冷后到第一台透平膨胀机膨胀,产生的冷量经换热器Ⅱ回收;随后氮气进入第二台透平膨胀机膨胀至更低压力,在换热器Ⅲ回收冷量将天然气液化。
第二节 气体液化循环 图8-29 具有两级氮膨胀的天然气 液化循环
第二节 气体液化循环 该循环适用于含氮稍多的原料天然气,通过氮-甲烷分离塔可制取纯氮作为氮循环的补充气,并可副产少量的纯液态甲烷。这种间接式膨胀机循环的能耗较高,对于标准状态下1m3的原料气约为0.5kW·h/m3原料气,比混合制冷剂循环高40%左右。