Image Processing Models Inspired by Two Kinds of Double-Opponent Neurons in the Primary Visual Cortex Yong-Jie Li / 李永杰 School of Life Science and Technology.

Slides:



Advertisements
Similar presentations
國立交通大學應用數學系 數學建模與科學計算研究所 簡 介. 隨著科技的日新月異,人類為追求完美的生活,其 所面臨的科學與工程問題也日趨複雜,舉凡天氣的 預測、飛機的設計、生物醫學中的神經網路、奈米 材料的研發、衍生性金融產品的定價、甚至交通流 量的監測等問題,透過「數學建模」的量化過程, 再配合以「科學計算」的方式去模擬現象並嘗試尋.
Advertisements

Ensite系统指导下复杂心律失常的射频消融治疗
加油添醋話擴寫 日新國小 鄒彩完.
刘立明 江南大学生物工程学院环境生物技术室
我们会赞叹生命之花的绚丽和多姿,也会歌颂生命之树的烂漫和青翠,但是生命是如此脆弱……
B型肝炎帶原之肝細胞癌患者接受肝動脈栓塞治療後血液中DNA之定量分析
Schizophrenia and Allied Disorder
-Artificial Neural Network- Hopfield Neural Network(HNN) 朝陽科技大學 資訊管理系 李麗華 教授.
Semantic-Synaptic Web Mining: A Novel Model for Improving the Web Mining 報告者:陳宜樺 報告日期:2015/9/25.
The keys to Unit 2 Section A 趣味英语
Blind dual watermarking for color images’ authentication and copyright protection Source : IEEE Transactions on Circuits and Systems for Video Technology.
IEEE TRANSACTIONS ON MAGNETICS, VOL. 49, NO. 3, MARCH 2013
-Artificial Neural Network- Adaline & Madaline
Early-type emission-line stars in LAMOST survey
Student : Shian-yi yang Student ID:M99L0107
Applications of Digital Signal Processing
Rate and Distortion Optimization for Reversible Data Hiding Using Multiple Histogram Shifting Source: IEEE Transactions On Cybernetics, Vol. 47, No. 2,February.
广西大学—国家天文台天体物理与空间科学研究中心 China-VO and Astroinformatics
Manifold Learning Kai Yang
Speaker: Kai-Wei Ping Advisor: Prof Dr. Ho-Ting Wu 2014/06/23
D. Halliday, R. Resnick, and J. Walker
3D Model Wan-Yu Chen NTUEE.
計算方法設計與分析 Design and Analysis of Algorithms 唐傳義
ITO薄膜晶体管辅助层的文献调研 姓名:刘洋 学号: 研究小组:TFT一组 薄膜晶体管与先进显示技术实验室
The Empirical Study on the Correlation between Equity Incentive and Enterprise Performance for Listed Companies 上市公司股权激励与企业绩效相关性的实证研究 汇报人:白欣蓉 学 号:
Entanglement purification and faithful qubit transmission
Elderly Suicide in Hong Kong 香港長者的自殺状况研究
如何從事論文寫作 2 玄奘大學 林國威
第十章 基于立体视觉的深度估计.
Digital Image Processing
作者 :Pawan Sinha, Benjamin Balas, Yuri Ostrovsky, Richard Russell
Image Segmentation with A Bounding Box Prior
信号与图像处理基础 An Introduction to Signal and Image Processing 中国科学技术大学 自动化系
加油添醋話擴寫 鄒彩完.
Step 1. Semi-supervised Given a region, where a primitive event happens Given the beginning and end time of each instance of the primitive event.
组合逻辑3 Combinational Logic
The expression and applications of topology on spatial data
Fundamentals of Physics 8/e 31 - Alternating Fields and Current
參加2006 SAE年會-與會心得報告 臺灣大學機械工程系所 黃元茂教授
Understanding masses of charm-strange states in Regge phenomenology
辐射带 1958年:探险者一号、探险者三号和苏联的卫星三号等科学卫星被发射后科学家出乎意料地发现了地球周围强烈的、被地磁场束缚的范艾伦辐射带(内辐射带)。 这个辐射带由能量在10至100MeV的质子组成,这些质子是由于宇宙线与地球大气上层撞击导致的中子衰变产生的,其中心在赤道离地球中心约1.5地球半径。
2012清大電資院學士班 「頂尖企業暑期實習」 經驗分享心得報告 實習企業:工業技術研究院 電光所 實習學生:電資院學士班  呂軒豪.
一般論文的格式 註:這裡指的是一般 journal papers 和 conference papers 的格式。
第十五课:在医院看病.
计算机视觉 Computer Vision 北京理工大学 计算机科学与工程系 2006年3月9日 Computer Vision
A high payload data hiding scheme based on modified AMBTC technique
Version Control System Based DSNs
VIDEO COMPRESSION & MPEG
研究技巧與論文撰寫方法 中央大學資管系 陳彥良.
高性能计算与天文技术联合实验室 智能与计算学部 天津大学
Unit title: 学校 School Area of interaction focus Significant concepts
前向人工神经网络敏感性研究 曾晓勤 河海大学计算机及信息工程学院 2003年10月.
線性規劃模式 Linear Programming Models
系统科学与复杂网络初探 刘建国 上海理工大学管理学院
第九章 明暗分析 Shape from Shading SFS SFM SFC SFT …… SFX.
An Efficient MSB Prediction-based Method for High-capacity Reversible Data Hiding in Encrypted Images 基于有效MSB预测的加密图像大容量可逆数据隐藏方法。 本文目的: 做到既有较高的藏量(1bpp),
第八章 結論章節.
基于功能磁共振技术的脑记忆问题的研究 生命科学与技术学院.
Efficient Query Relaxation for Complex Relationship Search on Graph Data 李舒馨
磁共振原理的临床应用.
(二)盲信号分离.
More About Auto-encoder
高效洁净机械制造实验室是 2009 年教育部批准立项建设的重点实验室。实验室秉承“突出特色、创新发展“的宗旨,以求真务实的态度认真做好各项工作。 实验室主任为黄传真教授,实验室副主任为刘战强教授和李方义教授。学术委员会主任为中国工程院院士卢秉恒教授。实验室固定人员中,有中国工程院院士艾兴教授,教育部.
Reversible Data Hiding in Color Image with Grayscale Invariance
Fast Image Dehazing Algorithm using Morphological Reconstruction
以碎形正交基底和時間情境圖為基礎進行之視訊檢索 Video retrieval based on fractal orthogonal bases and temporal graph 阿凡達 研究生:張敏倫 指導教授:蔣依吾博士 國立中山大學資訊工程學系.
簡單迴歸分析與相關分析 莊文忠 副教授 世新大學行政管理學系 計量分析一(莊文忠副教授) 2019/8/3.
Principle and application of optical information technology
阶段性词汇训练3 上海海事大学信息工程学院.
Hybrid fractal zerotree wavelet image coding
Presentation transcript:

Image Processing Models Inspired by Two Kinds of Double-Opponent Neurons in the Primary Visual Cortex Yong-Jie Li / 李永杰 School of Life Science and Technology Univ of Electronic Science & Tech of China liyj@uestc.edu.cn 电子科技大学生命科学与技术学院 / 神经信息教育部重点实验室

Outline Introduction Computational color constancy by double-opponent V1 cells with concentric center-surround receptive fields Contour detection by double-opponent V1 cells with oriented receptive fields Summary & Discussion

Outline Introduction Computational color constancy by double-opponent V1 cells with concentric center-surround receptive fields Contour detection by double-opponent V1 cells with oriented receptive fields Summary & Discussion

研究视觉的重要性 视觉系统是大脑最为重要的感知系统: 有70~80%的外界信息是由视觉系统接受和处理; 人脑皮层约50%以上的区域参与视觉信息的处理。 Where What V1

猴视觉皮层既平行又分级的30多个视觉皮层区域间连接的示意图 30多个视皮层区 10多个等级 300多条视觉联系

我们的目标 … 生物视觉系统是一种最高效、最合理的图像/视频信息处理系统。所以我们的目标—— 通过视觉神经机制的建模:阐明大脑视觉工作机理及发展类脑(Brain-like)技术。 阐明 大脑机理 发展 类脑技术 视觉系统 建模

视觉信息加工的基本单元 在视觉系统中,任何一级神经元在视网膜上都有一个对应的区域,该区域内的光学变化可以调制该神经元的反应,称为该神经元的感受野,或经典感受野(Classical RF, CRF)。

视觉信息加工的基本单元 + + 神经节、LGN、初级视皮层神经元的传统感受野(CRF)内的反应可被感受野外周区域中的刺激所调节 _ 外周

视觉信息加工的基本单元 神经元的(经典)感受野 + 感受野外周 经典感受野(classical receptive field, CRF) 非经典感受野(non-CRF, nCRF) (感受野外周、整合野) nCRF CRF + nCRF 组成了视觉信息加工的基本单元,为在更大范围内整合、加工视觉信息提供了可能。 CRF

Color is an important visual feature …

背侧流起始于V1,通过V2,进入背内侧区和中颞区(MT,亦称V5),然后抵达顶下小叶。背侧流常被称为“空间通路”(Where pathway),参与处理物体的空间位置信息以及相关的运动控制,例如眼跳(saccade)和伸取(Reaching)。 腹侧流起始于V1,依次通过V2,V4,进入下颞叶(Inferior temporal lobe)。该通路常被称为“内容通路”(What pathway),参与物体识别,例如面孔识别。该通路也于长期记忆有关。 --------------- 颞下回后区(PIT) (Conway, 2009)

Retina

Ganglion cells M cell P cell K cell

M cell P cell K cell

Color-opponent cells L+ M-

Single- & double-opponent cells Single-opponency double-opponency RG, LGN, V1 V1

Single- & double-opponent Single-opponent Single- & double-opponent

Single-opponency double-opponency

Luminance cells (60%) Color-luminance cells (29%) Color cells (11%)

color-luminance cells Color cells Proportion 60% (100/167) 29% (48/167) 11% (19/167) Opponent Non-opponent Double-opponent Single-opponent & Spatial tuning Band-pass Low-pass Response Achromatic boundaries Achromatic & chromatic boundaries Chromatic regions Orientation tuning Orientation-selectivity Non-orientation-selectivity Location 4B,4Cα,5,6 2/3 2/3,5,6 Johnson (2001) Nature Neuroscience; Solomon (2007) Nature Neuroscience

Luminance cells (60%) color-luminance cells(29%) Color cells(11%) Non-opponent Double-opponent Single-opponent Simple cell Complex cell few

We are concerned with the functional roles of the two types of double-opponent V1 cells

Outline Introduction Computational color constancy by double-opponent V1 cells with concentric center-surround receptive fields Contour detection by double-opponent V1 cells with oriented receptive fields Summary & Discussion

Color constancy

Color constancy The effect that the perceived color of a surface remains constant despite changes in the intensity and spectral composition of the illumination. Color constancy has had a long history of analysis (Monge, 1789; Young, 1807; von Helmholtz, 1867; Hering, 1920; …)

V4 ?

Single-opponent Input from LGN Double-opponent V1

(ICCV, 2013(oral); IEEE Trans PAMI, 2015)

(Reinhard et al. 2001)

(Ebner, 2007)

思路:高级视皮层神经元利用初级视皮层神经元的输出估计场景光源的颜色,然后从色偏图像中消除此光源的影响,恢复出场景物体的真实颜色。

Results on Gehler-Shi dataset (Lower angular error is better).

Median angular errors of various models on the Gehler-Shi dataset with 568 high dynamic range linear images, including a variety of indoor and outdoor scenes

Median angular errors of different algorithms on SFU lab dataset, which contains 321 available images of 31 different objects captured with calibrated camera under 11 different lights in laboratory.

Why the model works? 综合利用了边缘信息和部分区域信息

小 结 生理研究上,提出了与之前完全不同的推论—V1区的特定类型的双拮伉神经元输出编码了场景光源;此光源进一步地被更高级的视皮层用来矫正场景颜色,得到物体的真实物理颜色。 工程应用上,得到了与目前最好方法效果相当的结果,但方法简单,计算效率高。 下一步:多光源。

Outline Introduction Computational color constancy by double-opponent V1 cells with concentric center-surround receptive fields Contour detection by double-opponent V1 cells with oriented receptive fields Summary & Discussion

Oriented double-opponent cells in V1 (equal cone inputs) (unequal cone inputs)

V1 Double-Opponent (Output Layer) LGN Single-Opponent (Middle Layer) Retina Cone (Input Layer) CVPR, 2013; IEEE Trans IP, 2015

Input image R G B (Berkley Dataset)

R-G Channel B-Y Channel Luminance edge

Original image Ground-truth

Pb [3] Our model [3] Martin, et al., IEEE Trans. on PAMI, vol. 26, pp. 530-549, 2004.

(Computation time (s) per image averaged over 100 images)

Robert Shapley, Michael J. Hawken, Vision Research. 2011.  Image Fig. 5. The average spatial frequency tuning for three populations of V1 neurons. The tuning functions were estimated by Schluppeck and Engel (2002) from 230 neurons recorded by Johnson, Hawken, and Shapley. The dotted line represents the responses of the color-preferring neurons. It shows the characteristic low-pass spatial frequency tuning reported in most studies (Johnson et al., 2001, 2004, 2008; Lennie et al., 1990; Solomon et al., 2004; Thorell et al., 1984). The dashed line shows the responses of color-luminance neurons: cells classified as having robust responses to equiluminant color and to black/white luminance when the stimuli are matched for cone contrast. Most of the chromatically opponent color-luminance simple cells are double-opponent in that they have spatially separated chromatically opponent responses to L- and M-cones (Johnson et al., 2008; Fig. 6). The solid line is the average spatial frequency tuning of the luminance-preferring neurons. The maximum responses of luminance cells to luminance patterns are more than twice the amplitude of the best response to equiluminance. The tuning of the colorluminance and luminance cells are bandpass and similar in both preferred spatial frequency (2.56 ?1.26 cy/deg and 2.09 ?1.00 cy/deg respectively) and in bandwidth (2.05 ?0.70 octaves (full width, half height) and 2.96 ?0.69 octaves respectively). Robert Shapley, Michael J. Hawken, Vision Research. 2011. 

Outline Introduction Computational color constancy by double-opponent V1 cells with concentric center-surround receptive fields Contour detection by double-opponent V1 cells with oriented receptive fields Summary & Discussion

V1 cells with different receptive field (RF) properties have different functional roles: DO V1 cells with concentric center-surround RFs can code the illuminant color, which is used by higher area (e.g., V4) to realize color constancy. DO V1 cells with oriented RFs and unbalanced cone inputs can response to (detect) both the color- and luminance-defined contours.

Related papers [1] Kaifu Yang, Shaobing Gao, Chaoyi Li, Yongjie Li*, Efficient Color Boundary Detection with Color-opponent Mechanisms, CVPR, 2013, pp2810-2817. [2] Shaobing Gao, Kaifu Yang, Chaoyi Li, Yongjie Li*, A Color Constancy Model with Double-Opponency Mechanisms, ICCV, 2013, pp929-936 (oral paper). [3] Shaobing Gao, Kaifu Yang, Chaoyi Li, Yongjie Li*, Color Constancy Using Double-Opponency, IEEE Transactions on PAMI, 2015 (DOI: 10.1109/TPAMI.2015.2396053) [4] Kai-Fu Yang, Shao-Bing Gao, Ce-Feng Guo, Chao-Yi Li, and Yong-Jie Li*, Boundary Detection Using Double-Opponency and Spatial Sparseness Constraint, IEEE Transactions on Image Processing, 2015, 24(8): 2565-2578.

Thanks to … 李朝义院士、颜红梅教授、王玲副教授 … 博士生:杨开富、高绍兵、张显石 … 课题组网站:www.neuro.uestc.edu.cn/vccl

谢 谢 ! 敬请批评指正 ! Code available at: http://www.neuro.uestc.edu.cn/vccl/ liyj@uestc.edu.cn