4.9.2集成A/D转换器 退出 1. 8位集成逐次逼近式A/D转换器ADC0809

Slides:



Advertisements
Similar presentations
自动化学院应用电子教学中心 1 第七章 数 / 模和模 / 数转换器 数字电路与 系统设计. 自动化学院应用电子教学中心 2 第七章 模 / 数和数 / 模转换器 7.1 概述 7.2 D/A 转换器 7.3 A/D 转换器.
Advertisements

假设D3、D2、D1、D0全为1,则BS3、BS2、BS1、BS0全部与“1”端相连。根据电流定律,有:
实验四 利用中规模芯片设计时序电路(二).
第7章 模拟量输入输出接口 西安交通大学计算机系 桂小林 2017年3月18日.
第七讲 数字集成电路及应用 集成编码器 编码器的逻辑功能是将加在电路若干个输入端中的某一个输入端的信号变换成相应的一组二进制代码输出。常用的编码器集成电路有8/3线优先编码器和10/4线优先编码器等器件。 图4.5.1(a)是8/3线优先编码器74LS148的管脚排列图。I0~I7是输入信号输入端,输入8个信号,低电平有效。C、B、A为三输出端,可组成8组二进制码输出,且为反码输出。在I0~I7输入端中,优先权排列顺序为I7(最高)……I0(最低)。74LS148编码器的真值表如表4-1所示。
数模转换与模数转换的应用 电工电子实验教学中心.
EE141 脉冲电路3 刘鹏 浙江大学信息与电子工程学院 May 25, 2017.
微机原理与接口技术 微机原理与接口技术 朱华贵 2015年12月10日.
EE141 脉冲电路3 刘鹏 浙江大学信息与电子工程学院 May 25, 2017.
第2期 第1讲 电源设计 电子科技大学.
运算放大器与受控电源 实验目的 实验原理 实验仪器 实验步骤 实验报告要求 实验现象 实验结果分析 实验相关知识 实验标准报告.
Roy Wan PCI MS/s 14-bit 高速数字化仪 Roy Wan
实验八 D / A、A / D转换器 一、实验目的 1、了解D / A和A / D转换器的基本工作原理和基本结构。
第7章 模/数和数/模转换电路 7.1 模/数转换电路 7.2 数/模转换电路.
第12章 模拟量和数字量的转换 12.1 D/A转换器 12.2 A/D转换器.
第7章 数/模和模/数转换 本章小结 7.2 A/D转换 返回 A/D转换器的工作原理 A/D转换器的构成
第七章 D/A转换器和A/D转换器 第一节 D/A和A/D转换的基本原理 第二节 D/A转换器 第三节 A/D转换器 小结.
现代电子技术实验 4.11 RC带通滤波器的设计与测试.
实验四 组合逻辑电路的设计与测试 一.实验目的 1.掌握组合逻辑电路的设计 方法 2.学会对组合逻辑电路的测 试方法.
EE141 脉冲电路3 刘鹏 浙江大学信息与电子工程学院 May 29, 2018.
时序逻辑电路实验 一、 实验目的 1.熟悉集成计数器的功能和使用方法; 2.利用集成计数器设计任意进制计数器。 二、实验原理
2.5 MOS 门电路 MOS门电路:以MOS管作为开关元件构成的门电路。
实验六 积分器、微分器.
SATT 系列300MHz~3.5GHz数控衰减器 仪器级的性能,极富竞争力的价格
SATT 系列10MHz~4GHz数控衰减器 仪器级的性能,极富竞争力的价格
电子技术基础模拟部分 1 绪论 2 运算放大器 3 二极管及其基本电路 4 场效应三极管及其放大电路 5 双极结型三极管及其放大电路
§5-4 数/模转换电路(DAC) 学习要点: D/A转换电路原理 倒T型电阻网络D/A.
第二章 双极型晶体三极管(BJT).
14.2 时序逻辑电路的分析 概述 时序逻辑电路是由存储电路和组合逻辑电路共同组成的,它的输出状态不仅与输入有关,还与电路的过去状态有关,即具有存储功能。 输入信号 输出信号 输出方程 驱动方程 描述时序逻辑电路的三个方程 状态方程 存储电路的输入信号 时序逻辑电路构成框图 存储电路的输出信号.
第一章 电路基本分析方法 本章内容: 1. 电路和电路模型 2. 电压电流及其参考方向 3. 电路元件 4. 基尔霍夫定律
第6章 第6章 直流稳压电源 概述 6.1 单相桥式整流电路 6.2 滤波电路 6.3 串联型稳压电路 上页 下页 返回.
8.4 ADC0809接口电路及程序设计.
第7章 集成运算放大电路 7.1 概述 7.4 集成运算放大器.
第四章 MCS-51定时器/计数器 一、定时器结构 1.定时器结构框图
10.2 串联反馈式稳压电路 稳压电源质量指标 串联反馈式稳压电路工作原理 三端集成稳压器
第 8 章 数模和模数转换器 概 述 D/A 转换器 A/D 转换器 本章小结.
集成运算放大器 CF101 CF702 CF709 CF741 CF748 CF324 CF358 OP07 CF3130 CF347
汽车单片机应用技术 学习情景1: 汽车空调系统的单片机控制 主讲:向楠.
晶体管及其小信号放大 -单管共射电路的频率特性.
第三章:恒定电流 第4节 串联电路与并联电路.
本章的重点: 本章的难点: 第九章 数模和模数转换 1.D/A转换器的基本工作原理(包括双极性输出),输入与输出关系的定量计算;
晶体管及其小信号放大 -单管共射电路的频率特性.
诺 金 EE07系列 小型OEM数字输出温湿度变送器 产品特点: 典型应用: ► 气象应用 ► 加湿器、除湿器 技术参数: 选型指南:
实验二 射极跟随器 图2-2 射极跟随器实验电路.
长春理工大学 电工电子实验教学中心 数字电路实验 数字电路实验室.
同相输入端的输入信号与输出信号相位相同; 反相输入端的输入信号与输出信号相位相反。
《数字电子技术基础》(第五版)教学课件 清华大学 阎石 王红
第 8 章 直流稳压电源 8.1 概述 8.2 稳压管稳压电路 8.3 具有放大环节的串联型稳压电路 8.4 稳压电路的质量指标.
实验五 MSI组合逻辑功 能部件的应用与测试
中国科学院“核探测技术与核电子学”重点实验室
集成与非门在脉冲电路中的应用 实验目的 1. 了解集成与非门在脉冲电路中 的某些应用及其原理。 2. 学习用示波器观测波形参数与
HSC高速输出例程 HORNER APG.
电路原理教程 (远程教学课件) 浙江大学电气工程学院.
第六讲 数字集成电路 4.1 数字集成电路的分类与特点 退出 TTL数字集成电路
第4章 触发器.
调幅与检波的研究 实验目的 实验原理 实验内容 注意事项.
实验一 单级放大电路 一、 实验内容 1. 熟悉电子元件及实验箱 2. 掌握放大器静态工作点模拟电路调试方法及对放大器性能的影响
汽车单片机应用技术 学习情景1: 汽车空调系统的单片机控制 主讲:向楠.
单片机应用技术 (C语言版) 第10章 单片机测控接口
现代电子技术实验 集成运算放大器的放大特性.
信号发生电路 -非正弦波发生电路.
电工电子技术实验 电工电子教学部.
上节复习(11.7) 1、定时/计数器的基本原理? 2、定时/计数器的结构组成? 3、定时/计数器的控制关系?
第12章 555定时器及其应用 一. 555定时器的结构及工作原理 1. 分压器:由三个等值电阻构成
9.5 差分放大电路 差分放大电路用两个晶体管组成,电路结构对称,在理想情况下,两管的特性及对应电阻元件的参数值都相同,因此,两管的静态工作点也必然相同。 T1 T2 RC RB +UCC + ui1  iB iC ui2 RP RE EE iE + uO  静态分析 在静态时,ui1=
工业机器人入门使用教程 ESTUN机器人 主讲人:李老师
第二章 集成门电路 2.1 概述 2.2 TTL 门电路 2.3 CMOS 门电路 2.4 各种集成逻辑们的性 能比较 第2章 上页 下页
2.5.3 功率三角形与功率因数 1.瞬时功率.
第 10 章 运算放大器 10.1 运算放大器简单介绍 10.2 放大电路中的负反馈 10.3 运算放大器在信号运算方面的应用
9.6.2 互补对称放大电路 1. 无输出变压器(OTL)的互补对称放大电路 +UCC
Presentation transcript:

4.9.2集成A/D转换器 退出 1. 8位集成逐次逼近式A/D转换器ADC0809 A/D转换器的功能是把输入模拟电压或电流转换成与它成正比的数字量。A/D转换器种类很多,但从原理上通常可分为以下四种:计数器式A/D转换器,逐次逼近式A/D转换器,并行A/D转换器、双积分式A/D转换器。 1. 8位集成逐次逼近式A/D转换器ADC0809 ADC0809由八路模拟开关、地址锁存与译码器、比较器、256电阻阶梯、树状开关、逐次逼近式寄存器SAR、控制电路和三态输出锁存器等组成,内部结构如图4.9.5(a)所示。管脚排列图见图4.9.5(b)。该器件采用DIP封装,共28条引脚,现分四组简述如下: (1)IN0~IN7。IN0~IN7为八路模拟电压输入线,用于输入被转换的模拟电压。 退出

(2)地址输入线和控制线(4条)。ALE为地址锁存允许输入线,高电平有效。当ALE线为高电平时,A2、A1、A0三条地址线上地址信号得以锁存,经译码后控制八路模拟开关工作。当A2A1A0=000时,选中IN0输入端上的模拟电压进行A/D转换;同理,当A2A1A0=001时,选中IN1输入端上的电压进行转换;依次类推,当A2A1A0=111时,选中IN7输入端上的电压进行转换。 (3)数字量输出端及控制线(共11条)。START为“启动脉冲”输入线,该脉冲由数字控制系统提供,宽度要大于100ns,上升沿清零SAR,下降沿启动ADC工作。EOC为转换结束输出线,该线输出高电平表示A/D转换已结束,数字量已锁入“三态输出锁存器”。D7~D0为数字量输出线,D7为最高位,D0为最低位。OE为“输出允许”线,当OE为高电平时,可使D7~D0引脚上输出转换后的数字量。 退出

(4)电源线及时钟(5条)。CLOCK为时钟输入线,用于为ADC0809提供逐次比较所需时钟脉冲序列,最高频率650kHz。VCC为电源输入线,范围5~15V;GND为地线;VREF(+)和VREF(-)为参考电压输入线,通常VREF(+)和VCC相连,VREF(-)和GND相连。 退出

退出 2.位双积分式A/D转换器ICL7106 ICL7106是目前广泛应用的一种 位A/D转换器,可方便 的构成 (1)采用7~15V单电源供电,可选用9V叠层电池。低功耗(约16mW)。 (2)输入阻抗高(1010Ω)。内设时钟电路、+2.8V基准电源、异或门输出电路,能直接驱动 位液晶显示器。 (3)A/D转换精度高达±0.05%,。且具有自动调零、自动判定极性等功能。 (4)外围电路简单,仅需配5只电阻、5只电容和LCD显示器,即可构成一块DVM(直流电压表)表头。其抗干扰能力强,可靠性高。 退出

退出

退出

4.10 集成V/F、F/V变换器 退出 LMx31系列V/F、F/V变换器介绍 V/F变换即电压到频率的变换,表示输出信号频率f0与输入电压VI成正比。F/V变换即频率到电压的变换,表示输出电压V0与输入频率fI成正比。目前实现V/F变换和F/V的变换方法很多,有由分离元件组成的变换电路,也有各种集成电路,这类集成电路使用简单,调试方便,转换精度也比较高,是目前首选器件。下面将重点介绍LMx31系列V/F、F/V变换器。 LMx31系列V/F、F/V变换器介绍 LMx31系列包括LM131A/LM131、LM231A/LM231、LM331A/LM331,该系列的器件是一种性能价格比较高的集成电路,很适合用作精密频率电压转换器、长时间积分器、线性频率调制或解调等功能电路。 退出

退出 其主要特点有: ·双电源或单电源供电(单电源在4~40V范围内均能工作)。 ·高的线性度(0.01%)。 ·脉冲输出与所有逻辑形式兼容。 ·稳定性好,温度系数≤50×10-6/℃。 ·功耗低,当电源为5V时,功耗为15mW。 ·动态范围宽(10kHz满量程频率下最小值为100dB)。 ·满量程频率范围(1Hz~100kHz)。 ·成本低。 退出

退出 1脚:输出电流I0输出端。它是内部一个精密电流源的输出端。 2脚:基准电流IS输出端。该脚对地电压的典型值为1.9V。在使用时,一般对地接一电阻RS,其典型值取14kW,实际应用时取3.8kW~150kW。 输出端。该端子是内部一个三极管集电极,且集电极开路输出。 故在使用时,一定要外接一上拉电阻。 3脚:脉冲频率 4脚:接地端(或负电源端)。 5脚:外接定时电阻和定时电容端。该脚是内部单稳态触发器的外接定时元件端子。 6脚:阈值电压输入端。它是内部一个比较器的反相输入端,该端的电压与⑦脚输入电压相比较,并根据比较结果启动内部的单稳定时电路。 退出

7脚:被转换的外部电压输入端。 8脚:正电源端。 LMx31系列V/F、F/V变换器的应用实例 1.组成V/F变换器 退出

图4.10.2是LMx31组成的简单的V/F变换器。图中RIN、CIN组成输入滤波环节,RW1为调零电位器,RW2为转换增益调节,RW2要选用多圈电位器。在CL上串联RB产生一个附加的滞后效应,改善线性度。 RIN取100kW,使7脚的偏流能抵消6脚的偏流影响,以减小频率失调。CIN取0.01~0.1mF,当输入信号纹波较大时,也可取1mF,但无论如何不应使CIN<<CL,以防止VIN微小的变化会导致fOUT的瞬时停顿。按照电路所示的元件值,该电路的指标:输入电压0~+10 V,输出频率为0~10kHz,非线性误差为0.03%。 退出

退出

图4.10.3是LMx31组成的精密V/F变换器。该电路中主要是增加了积分器(由A、CF构成)。因为是反相积分,故要求输入电压为负值。本电路指标:输入电压0~-10V,输出频率为0~10kHz,非线性度可达±0.01%。 2.组成F/V变换器 退出

4.11 555/556集成定时器 退出

退出 ·CMOS型555定时器的功耗仅为双极型的几十分之一,静态电流仅为300mA,为微功耗集成电路。 555/556集成定时器有双极型和单极型(CMOS型)两种。555/556表示双极型结构;7555/7556则表示采用CMOS工艺制成的。但不管采用何种制造工艺,它们的管脚排列完全相同,国产型号与国外产品的管脚排列也一致,可互换使用。 双极型555定时器与CMOS型555定时器二者的功能相同,外型和管脚排列一致,在大多数应用场合下可直接代换。但二者采用的工艺不同,其性能指标是有差异的,主要表现如下方面: ·CMOS型555定时器的功耗仅为双极型的几十分之一,静态电流仅为300mA,为微功耗集成电路。 ·CMOS型555定时器的电源电压可低至2~3V,各输入端电流均为pA数量级。 ·CMOS型555定时器输出脉冲的上升沿和下降沿比双极型的要陡,转换时间短。 退出

退出 ·CMOS型555定时器在传输过渡时间里产生的尖峰电流小,仅为2~3mA,而双极型555的尖峰电流高达300~400mA。 ·CMOS型555定时器的输入阻抗比双极型的高出几个数量级,高达1010W。 ·CMOS型555定时器的驱动能力差,输出电流仅为1~3mA,而双极型555定时器的输出驱动电流可达200mA。 通过以上两者的比较,可以得出:在要求定时时间长、功耗小、负载轻的场合,宜选用CMOS型的555。而在负载重、要求驱动电流大的场合,宜选用双极型的555。此外,由于双极型的尖峰电流大,在电路中应加电源滤波电容,且容量要大。 CMOS型555定时器的输入阻抗高达1010W数量级,特别适合做长延时电路,RC时间常数可允许很大。 退出

水位自动控制器 退出

简易电容测试仪 退出

密码电子锁 退出

八路智力竞赛抢答器 退出

数字音量控制电路 退出

程控增益放大器 一般 RF=R ,所以电压放大倍数为: 退出