电力电子变流技术 第 二十六 讲 主讲教师:隋振                学时:32.

Slides:



Advertisements
Similar presentations
Modern Power Electronics
Advertisements

电力电子技术 西安交通大学 王兆安 黄俊 主编 (第四版) 机械工业出版社.
July 28, 2007 自动化专业英语教程 教学课件 http: //
第六章 电力电子技术Matlab仿真 基本内容 电力电子典型器件的Matlab仿真 电力电子典型电路的Matlab仿真
第七章 交流电力控制电路 第一节 交流开关及其应用电路 第二节 单相交流调压电路 第三节 相位控制器 第四节 三相交流调压电路 本章小节.
第 2 章 半导体电力开关器件.
第2章 电力电子器件 2.2 不可控器件——电力二极管 2.3 半控型器件——晶闸管 2.4 典型全控型器件 2.5 其他新型电力电子器件
维修电工技师 理论培训讲义.
第1章 电力电子器件 1.1 电力电子器件概述 1.2 不可控器件——二极管 1.3 半控型器件——晶闸管 1.4 典型全控型器件
第1章 电力电子器件 Power Electronics 1.1 电力电子器件概述 1.2 不可控器件——电力二极管
目 錄 壹、緣由 貳、問題解析 參、問題歸納 肆、因應對策 伍、評鑑獎勵 陸、追蹤考核 1.
关于负载谐振技术 主讲人:李金刚.
5.1 换流方式 5.2 电压型逆变电路 5.3 电流型逆变电路 5.4 多重逆变电路和多电平逆变电路 本章小结
第2章 电源变换和控制技术基础知识 机械工业出版社.
《电力电子技术》 电子教案 第1章 电力电子器件.
第一章 电路基本分析方法 本章内容: 1. 电路和电路模型 2. 电压电流及其参考方向 3. 电路元件 4. 基尔霍夫定律
电磁兼容(EMC) 之 RCD设计.
第12章 直流稳压电源与开关电源.
中国计量学院 LED 与 LED 电源.
第2期 第1讲 电源设计 电子科技大学.
第12章 MCS-51的功率接口设计 要用单片机控制各种各样的高压、大电流负载,如电动机、电磁铁、继电器、灯泡等,不能用单片机的I/O线来直接驱动,而必须通过各种驱动电路和开关电路来驱动。 另外,与强电隔离和抗干扰,有时需加接光电耦合器。 称此类接口为MCS-51的功率接口。 12.1 MCS-51的输出驱动能力及其外围集成数字驱动电路.
第11章 直流稳压电源 11.1 整流电路 11.2 滤波器 11.3 直流稳压电源 11.4 晶闸管及整流电路.
第九章 功率电子电路 第一节 晶闸管 第二节 单相可控整流电路 第三节 晶闸管逆变电路 第四节 直流斩波器的工作原理 第五节 交流调压电路.
电气基础知识 --低压元件.
第二章(2) 电路定理 主要内容: 1. 迭加定理和线性定理 2. 替代定理 3. 戴维南定理和诺顿定理 4. 最大功率传输定理
电力电子变流技术 第 二十八 讲 主讲教师:隋振                学时:32.
青铜剑科技风电驱动产品介绍 刘诚 深圳青铜剑科技股份有限公司.
第十三章 电功和电功率 一、电能和电功 第二课时
第一章 半导体材料及二极管.
第二章 双极型晶体三极管(BJT).
“描绘小灯泡的伏安特性曲线”实验中电路图的设计
第一章 电路基本分析方法 本章内容: 1. 电路和电路模型 2. 电压电流及其参考方向 3. 电路元件 4. 基尔霍夫定律
第6章 第6章 直流稳压电源 概述 6.1 单相桥式整流电路 6.2 滤波电路 6.3 串联型稳压电路 上页 下页 返回.
第一章 电路基本分析方法 本章内容: 1. 电路和电路模型 2. 电压电流及其参考方向 3. 电路元件 4. 基尔霍夫定律
10.2 串联反馈式稳压电路 稳压电源质量指标 串联反馈式稳压电路工作原理 三端集成稳压器
物理 九年级(下册) 新课标(RJ).
实验4 三相交流电路.
ACAP程序可计算正弦稳态平均功率 11-1 图示电路中,已知 。试求 (1) 电压源发出的瞬时功率。(2) 电感吸收的瞬时功率。
第十七章 第4节 欧姆定律在串、并联电路中的应用 wl com.
第二章 相控整流电路 March 3, 2000 北方交通大学电气工程系.
第三章:恒定电流 第4节 串联电路与并联电路.
xt4-1 circuit data 元件 支路 开始 终止 控制 元 件 元 件 类型 编号 结点 结点 支路 数 值 数 值 V R R
《电力电子技术》 电子教案 第5章 逆变电路 2019/4/22.
低温锂离子电池应用介绍.
实验三、叠 加 原 理 的 验 证 一、实验目的 1.验证线性电路叠加原理的正确性 2.从而加深对线性电路的叠加性和 齐次性的认识和理解。
一、交流接触器 1.结构 触头系统:主触头、辅助触头 常开触头(动合触头) 常闭触头(动断触头) 电磁系统:动、静铁芯,吸引线圈和反作用弹簧
LED伏安特性(V-I)测试 大连民族学院物理与材料工程学院.
PowerPoint 电子科技大学 R、C、L的相位关系的测量.
第二章 电力电子器件概述 首 页 2.1 简介 2.7 门极可关断晶闸管 2.2 二极管 2.8 绝缘栅双极晶体管 2.3 晶闸管
工厂高压线路的继电保护 一、概述 按GB规定,对3~66KV电力线路,应装设: 带时限的过电流保护 1.相间短路保护 电流速断保护
三相异步电动机 正反转控制电路 ——按钮操作接触器触点联锁的 电动机正反转控制电路.
6-1 求题图6-1所示双口网络的电阻参数和电导参数。
§2.5 二极管应用电路 §2.5.1 直流稳压电源的组成和功能 整 流 电 路 滤 波 电 路 稳 压 电 路 u1 u2 u3 u4
第 8 章 直流稳压电源 8.1 概述 8.2 稳压管稳压电路 8.3 具有放大环节的串联型稳压电路 8.4 稳压电路的质量指标.
电路原理教程 (远程教学课件) 浙江大学电气工程学院.
1520 AC Adaptor Demo Model
电路原理教程 (远程教学课件) 浙江大学电气工程学院.
实验一 单级放大电路 一、 实验内容 1. 熟悉电子元件及实验箱 2. 掌握放大器静态工作点模拟电路调试方法及对放大器性能的影响
复习: 欧姆定律: 1. 内容: 导体中的电流与导体两端的电压成正比,与导体的电阻成反比。 2. 表达式: 3. 变形公式:
第八章 电力电子器件的 门极控制电路 电力电子装置--主电路、控制电路 控制电路的作用:
第四章 MOSFET及其放大电路.
AC-DC 产品IC介绍 2015 电源管理IC事业部.
监 测 继 电 器 EMR4.
13.5 怎样认识和测量电压.
电力电子变流技术 第一讲 主讲教师:隋振                学时:32.
西华大学《模拟电子技术》示范课 主讲:胡秋宇 杨清 序号:71 60 组号:13 一八年十二月制
2.5.3 功率三角形与功率因数 1.瞬时功率.
电阻的串联 2014机电班.
实验四 绝缘栅双极型晶体管(IGBT)特性与驱动电路研究
9.6.2 互补对称放大电路 1. 无输出变压器(OTL)的互补对称放大电路 +UCC
Presentation transcript:

电力电子变流技术 第 二十六 讲 主讲教师:隋振                学时:32

第六章 晶闸管串并联及保护 6.1 电力电子器件器件的串联和并联使用 6.2 电力电子器件器件的保护

6.1电力电子器件器件的串联和并联使用 一 晶闸管的串联 二 晶闸管的并联

6.1(一) 晶闸管的串联 目的:当晶闸管额定电压小于要求时,可以串联。 6.1(一) 晶闸管的串联 目的:当晶闸管额定电压小于要求时,可以串联。 问题:理想串联希望器件分压相等,但因特性差异,使器件电压分配不均匀。 静态不均压:串联的器件流过的漏电流相同,但因静态伏安特性的分散性,各器件分压不等。 动态不均压:由于器件动态参数和特性的差异造成的不均压。

6.1(一) 晶闸管的串联 静态均压措施: 动态均压措施: 选用参数和特性尽量一致的器件。 采用电阻均压,Rp的阻值应比器件阻断时的正、反向电阻小得多。 b) a) R C VT 1 2 P I O U T1 T2 动态均压措施: 选择动态参数和特性尽量一致的器件。 用RC并联支路作动态均压。 采用门极强脉冲触发可以显著减小器件开通时间的差异。 图6-1 晶闸管的串联 a) 伏安特性差异 b) 串联均压措施

6.1(二) 晶闸管的并联 目的:多个器件并联来承担较大的电流 问题:会分别因静态和动态特性参数的差异而电流分配不均匀。 均流措施:  均流措施: 挑选特性参数尽量一致的器件。 采用均流电抗器。 用门极强脉冲触发也有助于动态均流。 当需要同时串联和并联晶闸管时,通常采用先串后并的方法联接。

6.2 电力电子器件器件的保护 一 过电压的产生及过电压保护 二 过电流保护 三 缓冲电路

6.2(一) 过电压的产生及过电压保护 电力电子装置可能的过电压——外因过电压和内因过电压 外因过电压:主要来自雷击和系统操作过程等外因 6.2(一) 过电压的产生及过电压保护 电力电子装置可能的过电压——外因过电压和内因过电压 外因过电压:主要来自雷击和系统操作过程等外因 操作过电压:由分闸、合闸等开关操作引起 雷击过电压:由雷击引起 内因过电压:主要来自电力电子装置内部器件的开关过程 换相过电压:晶闸管或与全控型器件反并联的二极管在换相结束后,反向电流急剧减小,会由线路电感在器件两端感应出过电压。 关断过电压:全控型器件关断时,正向电流迅速降低而由线路电感在器件两端感应出的过电压。

6.2(一) 过电压的产生及过电压保护 过电压保护措施 电力电子装置可视具体情况只采用其中的几种。 6.2(一) 过电压的产生及过电压保护 过电压保护措施 图6-2 过电压抑制措施及配置位置 F避雷器 D变压器静电屏蔽层 C静电感应过电压抑制电容 RC1阀侧浪涌过电压抑制用RC电路 RC2阀侧浪涌过电压抑制用反向阻断式RC电路 RV压敏电阻过电压抑制器 RC3阀器件换相过电压抑制用RC电路 RC4直流侧RC抑制电路 RCD阀器件关断过电压抑制用RCD电路 电力电子装置可视具体情况只采用其中的几种。 其中RC3和RCD为抑制内因过电压的措施,属于缓冲电路范畴。

6.2(二) 过电流保护 过电流——过载和短路两种情况 保护措施 同时采用几种过电流保护措施,提高可靠性和合理性。 6.2(二) 过电流保护 过电流——过载和短路两种情况 保护措施 负载 触发电路 开关电路 过电流 继电器 交流断路器 动作电流 整定值 短路器 电流检测 电子保护电路 快速熔断器 变流器 直流快速断路器 电流互感器 变压器 图6-3 过电流保护措施及配置位置 同时采用几种过电流保护措施,提高可靠性和合理性。 电子电路作为第一保护措施,快熔仅作为短路时的部分 区段的保护,直流快速断路器整定在电子电路动作之后实现保护,过电流继电器整定在过载时动作。

6.2(二) 过电流保护 快熔对器件的保护方式:全保护和短路保护两种 全保护:过载、短路均由快熔进行保护,适用于小功率装置或器件裕度较大的场合。 短路保护:快熔只在短路电流较大的区域起保护作用。 对重要的且易发生短路的晶闸管设备,或全控型器件,需采用电子电路进行过电流保护。 常在全控型器件的驱动电路中设置过电流保护环节,响应最快 。

6.2(三) 缓冲电路 缓冲电路(Snubber Circuit) : 又称吸收电路,抑制器件的内因过电压、du/dt、过电流和di/dt,减小器件的开关损耗。 关断缓冲电路(du/dt抑制电路)——吸收器件的关断过电压和换相过电压,抑制du/dt,减小关断损耗。 开通缓冲电路(di/dt抑制电路)——抑制器件开通时的电流过冲和di/dt,减小器件的开通损耗。 复合缓冲电路——关断缓冲电路和开通缓冲电路的结合。 按能量的去向分类法:耗能式缓冲电路和馈能式缓冲电路(无损吸收电路)。 通常将缓冲电路专指关断缓冲电路,将开通缓冲电路叫做di/dt抑制电路。

6.2(三) 缓冲电路 缓冲电路作用分析 无缓冲电路: 有缓冲电路: 图6-5 di/dt抑制电路和 充放电型RCD缓冲电路及波形 i A b) t u CE i C O d 抑制电路 无 时 有 有缓冲电路时 无缓冲电路时 A D C B 无缓冲电路 有缓冲电路 u CE i O 图6-5 di/dt抑制电路和 充放电型RCD缓冲电路及波形 a) 电路 b) 波形 图6-4 关断时的负载线

6.2(三) 缓冲电路 其中RC缓冲电路主要用于小容量器件,而放电阻止型RCD缓冲电路用于中或大容量器件。 图6-7 另外两种常用的缓冲电路 RC吸收电路  放电阻止型RCD吸收电路 图6-6 di/dt抑制电路和 充放电型RCD缓冲电路及波形 a) 电路