Illumination Model and Surface Rendering Method

Slides:



Advertisements
Similar presentations
期末考试作文讲解 % 的同学赞成住校 30% 的学生反对住校 1. 有利于培养我们良好的学 习和生活习惯; 1. 学生住校不利于了解外 界信息; 2 可与老师及同学充分交流有 利于共同进步。 2. 和家人交流少。 在寄宿制高中,大部分学生住校,但仍有一部分学生选 择走读。你校就就此开展了一次问卷调查,主题为.
Advertisements

前言 何謂能源 能源的種類 我們為何要節約能源 如何正確安全使用能源 節約能源的方法 節約能源的技術 結論與心得 資料來源.
2014 年上学期 湖南长郡卫星远程学校 制作 13 Getting news from the Internet.
宏 观 经 济 学 N.Gregory Mankiw 上海杉达学院.
第4章 真实感图形学 真实感图形学研究什么? 早期,计算机的速度,使人们满足于线框图 1967年, Wylie开始了用计算机生成真实感
3D STUDIO MAX R3.0简介 报告人 :车皓阳 报告时间:11/25/2000.
(复习课) 光学复习.
5B 教材分析.
Chapter 3. Visual Appearance 视觉外观
SHARE with YOU Why am I here? (堅持……) What did I do?
摘要的开头: The passage mainly tells us sth.
沐阳老年社区.
Unit 7 Protect the Earth (Story time) 觅渡教育集团 王 珏 标题 课时 教师姓名 日期 1.
3-3 Modeling with Systems of DEs
Ⅱ、从方框里选择合适的单词填空,使句子完整通顺。 [ size beef special large yet ]
Platypus — Indoor Localization and Identification through Sensing Electric Potential Changes in Human Bodies.
D. Halliday, R. Resnick, and J. Walker
第十章 基于立体视觉的深度估计.
第二章 共轴球面系统的物像关系 Chapter 2: Object-image relations of coaxial spheric system.
Sampling Theory and Some Important Sampling Distributions
Digital Terrain Modeling
第八章 Illumination and Shading
HLA - Time Management 陳昱豪.
Step 1. Semi-supervised Given a region, where a primitive event happens Given the beginning and end time of each instance of the primitive event.
製程能力分析 何正斌 教授 國立屏東科技大學工業管理學系.
3D Object Representations
普通物理 General Physics 29 - Current-Produced Magnetic Field
塑膠材料的種類 塑膠在模具內的流動模式 流動性質的影響 溫度性質的影響
增强型MR可解决 临床放射成像的 多供应商互操作性问题
ICG 2018 Fall Homework1 Guidance
磁共振原理的临床应用 福建医科大学附属第一医院影像科 方哲明.
辐射带 1958年:探险者一号、探险者三号和苏联的卫星三号等科学卫星被发射后科学家出乎意料地发现了地球周围强烈的、被地磁场束缚的范艾伦辐射带(内辐射带)。 这个辐射带由能量在10至100MeV的质子组成,这些质子是由于宇宙线与地球大气上层撞击导致的中子衰变产生的,其中心在赤道离地球中心约1.5地球半径。
中国农村沼气政策与发展战略 李景明 中国北京 农业部科技发展中心能源生态处处长 中国沼气学会秘书长.
Neutron Stars and Black Holes 中子星和黑洞
Section A Period 2.
推动全球能源变革,以创造清洁、安全、繁荣的低碳未来。
Illusions 動畫圖片圓入並與標題一起壓縮 (中級) 若要複製此投影片上的圖片效果,請執行下列作業:
Chp.4 The Discount Factor
普通物理 General Physics 21 - Coulomb's Law
Version Control System Based DSNs
漂亮的台灣水雉What Beautiful Jacanas in Taiwan !
Remember the five simple rules to be happy 快樂的五個簡單常規
高性能计算与天文技术联合实验室 智能与计算学部 天津大学
Mechanics Exercise Class Ⅰ
Unit 8 Our Clothes Topic1 What a nice coat! Section D 赤峰市翁牛特旗梧桐花中学 赵亚平.
Chapter 5 Attributes of Output Primitives (图元的属性)
Chp.4 The Discount Factor
3.5 Region Filling Region Filling is a process of “coloring in” a definite image area or region. 2019/4/19.
关联词 Writing.
Simple Regression (簡單迴歸分析)
中考英语阅读理解 完成句子命题与备考 宝鸡市教育局教研室 任军利
半導體專題實驗 實驗一 熱電性質與四點探針方法.
Chp.4 The Discount Factor
第九章 明暗分析 Shape from Shading SFS SFM SFC SFT …… SFX.
Remember the five simple rules to be happy 快樂的五個簡單常規
Remember the five simple rules to be happy 快樂的五個簡單常規
2008 教學觀摩會 教學心得報告 資工系 曹孝櫟.
Q & A.
Remember the five simple rules to be happy 快樂的五個簡單常規
磁共振原理的临床应用.
Mechanics Exercise Class Ⅱ
名词从句(2).
Q1: How do we determine the crystal structure?
定语从句(11).
名词从句(4) (复习课).
國立東華大學課程設計與潛能開發學系張德勝
动词不定式(6).
何正斌 博士 國立屏東科技大學工業管理研究所 教授
簡單迴歸分析與相關分析 莊文忠 副教授 世新大學行政管理學系 計量分析一(莊文忠副教授) 2019/8/3.
Principle and application of optical information technology
Presentation transcript:

Illumination Model and Surface Rendering Method Lectured by Hua Yan 对场景的对象进行透视投影,然后在可见面上产生自然光效果,可以实现场景的真实感显示。 光照模型主要用于对象表面某光照位置的颜色计算, 表面绘制是使用光照模型为对象的所有投影位置确定象素颜色。

Contents Light source光源 Basic illumination models基本光照模型 Surface Rendering Method表面绘制方法 Shading着色处理 OpenGL函数(P.510-P.527) …

Light Source light-emitting sources & light-reflecting sources 点光源、平行光、聚光 Point-light source model is a reasonable approximation for sources whose dimensions are small compared to the size of objects in the scene. Such as the sun. Distributed light source model is is a approximation for sources whose area of the source is not small compared to the surfaces in the scene. Such as long fluorescent light.

Diffuse Reflection Specular Reflection Surfaces that are rough, or grainy, tend to scatter the reflected light in all directions. This scattered light is called diffuse reflection. In addition to diffuse reflection, light sources create highlights, or bright spots, called specular reflection.

Basic Illumination Models Ambient Light环境光 Iambdiff = KaIa Ka – ambient-reflection coefficient Ia -- ambient light intensity Ambient light produces a flat uninteresting shading for each surface, scene are rarely rendered with ambient light alone. At least one light source is included in a scene, often as a point source at the viewing position +

Diffuse Reflection & Lambert’s Cosine Law漫反射与朗伯特余弦定律 ILdiff = KdIlcosθ= KdIl(N.L) Kd – diffuse-reflection coefficient Il -- intensity of point light source N L

θ Φ Specular Reflection镜面反射 Ispec = w(θ)IlcosnsΦ =KsIl(V.R) ns V.R=N.H When we look at an illuminated shiny surface, such as polished metal, an apple, or a person’s forehead, we see a highlight, or bright spot, at certain viewing directions. This phenomenon, called specular reflection. It is the result of total, or near total, reflection of the incident light in a concentrated region around the specular-reflection angle. W() 镜面反射系数 Φ为观察方向V与镜面反射方向R的夹角 ns代表镜面反射参数,由观察物体的表面材质决定,光滑表面的ns值大(范围小),而粗糙表面的ns值小(范围大),影响镜面反射的角度范围。 N L R V θ Φ

Phong Model :由物体表面上一点P反射到视点的光强I为环境光的反射光强 、理想漫反射光强 、和镜面反射光的总和。 I= Iambdiff + Ildiff + Ispec History of illumination models 1967年,Wylie等人第一次在显示物体时加进光照效果,认为光强与距离成反比。 1970年,Bouknight提出第一个光反射模型:Lambert漫反射+环境光 1971年,Gouraud提出漫反射模型加插值的思想 1975年,Phong提出图形学中第一个有影响的光照明模型 Warn Model The warn model provides a method for simulating studio lighting effects by controlling light intensity in different directions

Example + + =

环境光 + 境面反射 + 理想漫反射 = Phong光照明模型是真实感图形学中提出的第一个有影响的光照明模型 显示出的物体象塑料,无质感变化 没有考虑物体间相互反射光 镜面反射颜色与材质无关 镜面反射大入射角失真现象 =

Intensity Attenuation强度衰减 f(d) = 1/d2 Compensated attenuation function f(d) = 1/(a0+a1d+a2d2) I=KaIa + f(di)Ili[kd(N.Li) +Ks(N.Hi)ns] As radiant energy from a point light light source travels through space, its amplitude is attenuated by the factor 1/d2, where d is the distance that the light has traveled. This means that a surface close to the light source receives a higher incident intensity from the source than a distant surface. Therefore, to produce realistic lighting effects, our illumination model should take this intensity attenuation into account. Otherwise, we are illuminating all surfaces with the same intensity, no matter how far they might be from the light source. If two parallel surfaces with the same optical parameters overlap, they would be indistinguishable form each other. The two surfaces would be displayed as one surface. If we use the factor 1/d2 to attenuate intensities, it does not always produce realistic pictures. The factor 1/d2 produces too much intensity variations when d is small, and it produce very little variation when d is large. This is because real scenes are usually not illuminated with point light sources, and our illumination model is too simple to accurately describe real lighting effects.

Multiple Light Resources Example -- RGB Model

Transparency Model Diffuse Refraction Specular Refraction formula I = (1-Kt)Irefl+KtItrans Kt -- transparency coefficient (1-Kt) -- opacity factor A transparent surface, in general, produces both reflected and transmitted light. The relative contribution of the transmitted light depends on the degree of transparency of the surface and whether any light sources or illuminated surfaces are behind the transparent surfaces. Both diffuse and specular transmission can take place at the surfaces of a transparent object. Diffuse effects are important when a partially transparent surface, such as frosted glass, is to be modeled. Light passing through such materials is scattered so that a blurred image of background objects is obtained. Diffuse refractions can be generated by decreasing the intensity of the refracted light and spreading intensity contributions at each point on the refracting surface onto a finite area. These manipulations are time-consuming, and most lighting models employs only specular effects. Shell’s law

Snell’s Law

Fog - 雾化 Simple atmospheric effect A little better realism Help in determining distances between viewer and object

Fog - 雾化 Color of fog: color of surface: How to compute f ? 3 ways: linear, exponential, exponential-squared Linear:

Fog Example Often just a matter of Choosing fog color Choosing fog model Turning it on

Surface Rendering Shading(着色处理): do lighting (at vertices) and determine pixel’s colors from these Three types of shading: Flat 平面着色 Gouraud Phong Fast Phong 扁平着色处理以三角形为单位进行颜色计算,然后用这种颜色对三角形进行填充; Goraud着色处理首先计算三角形每个顶点处的光照,然后用顶点颜色通过插值来计算三角形内部各点的光照; Phong着色处理用三角形各顶点处的法向量通过插值的方式计算每个像素处的法向量,然后根据各个像素的法向量计算光照效果。

Surface Rendering Flat(平面绘制):以多边形的一个顶点或中心点计算RGB分量,然后用同种颜色对三角形进行填充 速度快,实现容易 如果用户想看到模型的刻面,可用此方法

Surface Rendering Gouraud:首先计算三角形每个顶点处的光照,然后用顶点颜色通过插值来计算三角形内部各点的光照 大多数图形硬件实现了该方法 速度几乎与flat方法一样 着色效果极大地依赖于所要绘制物体的细节层次 丢失高光,无法捕捉聚光效果以及马赫带效应(一定反差的图像边界部位在视觉上给人以特别白或特别黑的感觉 )

Surface Rendering Phong:用三角形各顶点处的法向量通过插值的方式计算每个像素处的法向量,然后根据各个像素的法向量计算光照效果 计算每个像素点的光照要比计算每个顶点的光照复杂得多且开销大 目前商业化的软件很少采用这种方法

Surface Rendering Example 扁平着色处理以三角形为单位进行颜色计算,然后用这种颜色对三角形进行填充; Goraud着色处理首先计算三角形每个顶点处的光照,然后用顶点颜色通过插值来计算三角形内部各点的光照; Phong着色处理用三角形各顶点处的法向量通过插值的方式计算每个像素处的法向量,然后根据各个像素的法向量计算光照效果。