2章 半导体二极管及基本电路 半导体的基本知识 PN结的形成及特性 半导体二极管 ★二极管基本电路分析 特殊二极管.

Slides:



Advertisements
Similar presentations
第三章 二极管及其基本电路 2016年3月4日.
Advertisements

第14章 半导体二极管和三极管 14.1 半导体的导电特性 14.2 PN结 14.3 半导体二极管 14.4 稳压二极管
《 模 拟 电 子 线 路 》 第2章 杨 凌.
第一章 半导体二极管和三极管 大家网注册电气工程师论坛:
绪 论 电子技术分为两大部分 1、模拟电子技术:处理的信号是连续的,如正弦波等(模拟电路)。
第3章 分立元件基本电路 3.1 共发射极放大电路 3.2 共集电极放大电路 3.3 共源极放大电路 3.4 分立元件组成的基本门电路.
1 第1章: 半導體二極體.
第一章 晶体二极管 1.1 半导体物理基本知识 1.2 PN结 1.3 晶体二极管电路的分析方法 1.4 晶体二极管的应用
模拟电子技术基础 第二讲 主讲 :黄友锐 安徽理工大学电气工程系.
第二章 太阳能电池原理 主讲:杨少林 材料科学与工程学院.
->>乳源高级中学通用技术<<-
电子器件与组件结构设计 王华涛 哈尔滨工业大学(威海) 材料科学与工程学院 办公室:A 楼208 Tel:
模拟电子技术基础 李思光.
第7章 半导体二极管和三极管 7.1 半导体的基础知识 7.2 PN结 7.3 半导体二极管 7.4 半导体三极管.
计 算 机 电 路 基 础 执教者:谢婷.
模拟电子技术基础 Fundamentals of Analog Electronics 童诗白、华成英 主编
模拟电子技术.
电子技术基础 主讲:林昕.
第2章 半导体二极管及直流稳压电源.
第十一章 常用半导体器件.
第一章 半导体器件 1.1 半导体的特性 1.2 半导体二极管 1.3 双极型三极管(BJT) 1.4 场效应三极管 (FET)
第一章 半导体器件基础 1.1 半导体的基本知识 1.2 半导体二极管 1.3 半导体三极管 1.4 BJT模型 1.5 场效应管.
1.双极性晶体管的结构及类型 双极性晶体管的结构如图1.3.1所示。它有两种类型:NPN型和PNP型。 发射极 集电极 基极 Emitter
第一章 半导体器件 1.1 半导体的特性 1.2 半导体二极管 1.3 双极型三极管(BJT) 1.4 场效应三极管.
模拟电子线路基础 主讲人 刘雪芳 陈梅.
模块一 半导体器件基础 1.1 半导体的基本知识 1.2 半导体二极管 1.3 半导体三极管 1.4 BJT模型 1.5 场效应管.
CTGU Fundamental of Electronic Technology 3 二极管及其基本电路.
第2期 第1讲 电源设计 电子科技大学.
概 述 一、门电路的概念 实现基本逻辑运算和常用复合逻辑运算的电子电路 与 非 门 或 非 门 异或门 与或非门 与 非 与 与 门 或 门
低频电子线路 主讲人 刘雪芳 陈梅.
现代电子技术实验 4.11 RC带通滤波器的设计与测试.
第1章 半导体二极管、三极管和场效应管 1.1 半导体的导电特性 1.2 PN结 1.3 半导体二极管 1.4 稳压管 1.5 半导体三极管
电子技术基础与应用 主编 刘占娟 2008年8月.
第六章 直流电源电路 6.1 直流电源的组成 功能:把交流电压变成稳定的大小合适 的直流电压 交流电源 负载 变压 整流 滤波 稳压 u1
第18章 直流稳压电源 18.1 整流电路 18.2 滤波器 18.3 直流稳压电源.
模拟电子技术基础 信息科学与工程学院·基础电子教研室.
电 子 技 术 第14章 二极管和晶体管 第15章 基本放大电路 第16章 集成运算放大器 第17章 电子电路中的反馈
第14章 二极管和晶体管 14.1 半导体的导电特性 14.2 PN结 14.3 半导体二极管 14.4 稳压二极管 14.5 半导体三极管
第三章 二极管及其基本电路 2018年3月.
电子技术基础——模拟部分 主讲 申春.
2.5 MOS 门电路 MOS门电路:以MOS管作为开关元件构成的门电路。
第一章 半导体材料及二极管.
3 二极管及其基本电路 计划学时:6 基本要求:掌握PN结的形成及特性、二极管的基本电路及分析方法,了解二极管的基本知识、和一些特殊二极管。
第二章 双极型晶体三极管(BJT).
模拟电子技术及应用.
数字电子电路 唐竞新 二零零三年.
第一章 电路基本分析方法 本章内容: 1. 电路和电路模型 2. 电压电流及其参考方向 3. 电路元件 4. 基尔霍夫定律
第6章 第6章 直流稳压电源 概述 6.1 单相桥式整流电路 6.2 滤波电路 6.3 串联型稳压电路 上页 下页 返回.
晶体管及其小信号放大 (1).
10.2 串联反馈式稳压电路 稳压电源质量指标 串联反馈式稳压电路工作原理 三端集成稳压器
晶体管及其小信号放大 -单管共射电路的频率特性.
晶体管及其小信号放大 -单管共射电路的频率特性.
晶体管及其小信号放大 (1).
6-1 求题图6-1所示双口网络的电阻参数和电导参数。
第二章 双极型晶体三极管(BJT).
§2.5 二极管应用电路 §2.5.1 直流稳压电源的组成和功能 整 流 电 路 滤 波 电 路 稳 压 电 路 u1 u2 u3 u4
PowerPoint 电子科技大学 半导体器件的图测方法.
第 8 章 直流稳压电源 8.1 概述 8.2 稳压管稳压电路 8.3 具有放大环节的串联型稳压电路 8.4 稳压电路的质量指标.
4 场效应管放大电路 4.1 结型场效应管 *4.2 砷化镓金属-半导体场效应管 4.3 金属-氧化物-半导体场效应管
电路原理教程 (远程教学课件) 浙江大学电气工程学院.
第2章 半导体二极管及其应用电路 本章重点内容 PN结及其单向导电特性 半导体二极管的伏安特性曲线 二极管基本电路及其分析方法
实验一 单级放大电路 一、 实验内容 1. 熟悉电子元件及实验箱 2. 掌握放大器静态工作点模拟电路调试方法及对放大器性能的影响
PN结正向特性的研究和应用 主讲人:冯波.
稳压二极管及其它二极管 西电丝绸之路云课堂 孙肖子.
第四章 MOSFET及其放大电路.
常用半导体器件原理(2) ---PN结 西电丝绸之路云课堂 孙肖子.
电子技术概貌: 电子技术应用领域: 广播通信:发射机、接收机、扩音、录音、程控交换机、电话、手机
2.5.3 功率三角形与功率因数 1.瞬时功率.
第一章 半导体二极 管及其应用 第一章 半导体二极 管及其应用 山东工业职业学院电气工程系制作.
9.6.2 互补对称放大电路 1. 无输出变压器(OTL)的互补对称放大电路 +UCC
Presentation transcript:

2章 半导体二极管及基本电路 半导体的基本知识 PN结的形成及特性 半导体二极管 ★二极管基本电路分析 特殊二极管

半导体的基本知识 本征半导体、空穴及其导电作用 杂质半导体 半导体的基本知识 根据物体导电能力(电阻率)的不同,划分为导体、绝缘体和半导体。 半导体的电阻率为10-3~109 cm。典型的半导体有硅Si和锗Ge以及砷化镓GaAs等。 半导体的特点:1)导电能力不同于导体、绝缘体; 2)受外界光和热刺激时电导率发生很大变化——光敏元件、热敏元件; 3)掺进微量杂质,导电能力显著增加——半导体。 本征半导体、空穴及其导电作用 杂质半导体

半导体的共价键结构 原子按一定规律整齐排列,形成晶体点阵后,结构图为: 硅和锗是四价元素,在原子最外层轨道上的四个电子称为价电子。它们分别与周围的四个原子的价电子形成共价键。 原子按一定规律整齐排列,形成晶体点阵后,结构图为: +4 返回

电导率——与材料单位体积中所含载流子数有关,载流子浓度越高,电导率越高。 本征半导体、空穴及其导电作用 本征半导体——完全纯净的、结构完整的半导体晶体。 载流子——可以自由移动的带电粒子。 电导率——与材料单位体积中所含载流子数有关,载流子浓度越高,电导率越高。 返回

自由电子产生的同时,在其原来的共价键中就出现了一个空位,这个空位为空穴。 电子空穴对 当T=0K和无外界激发时,导体中没有栽流子,不导电。当温度升高或受到光的照射时,价电子能量增高,有的价电子可以挣脱原子核的束缚,而参与导电,成为自由电子——本证激发。 +4 本征激发 空穴 自由电子 动画1-1 自由电子产生的同时,在其原来的共价键中就出现了一个空位,这个空位为空穴。 因热激发而出现的自由电子和空穴是同时成对出现的,称为电子空穴对。 返回

杂质半导体 在本征半导体中掺入某些微量元素作为杂质,可使半导体的导电性发生显著变化。掺入的杂质主要是三价或五价元素。掺入杂质的本征半导体称为杂质半导体。 N型半导体(电子型半导体) 多余电子, 成为自由电子 在本征半导体中掺入五价的元素(磷、砷、锑 ) 自由电子 +4 +5 +5 返回

P型半导体(空穴型半导体) 在本征半导体中掺入三价的元素(硼) 空穴 空穴 +4 +3 +3 返回

N型半导体的多数载流子为电子,少数载流子是空穴; P型半导体的多数载流子为空穴,少数载流子是电子。 例:纯净硅晶体中硅原子数为1022/cm3数量级, 在室稳下,载流子浓度为ni=pi=1010数量级, 掺入百万分之一的杂质(1/10-6),即杂质浓度为1022*(1/106)=1016数量级, 则掺杂后载流子浓度为1016+1010,约为1016数量级, 比掺杂前载流子增加106,即一百万倍。 返回

PN结的形成及特性 PN结的形成及特性 PN结的形成 PN结的单向导电性

PN结的形成 因浓度差 多子的扩散运动 由杂质离子形成空间电荷区 空间电荷区形成内电场 内电场促使少子漂移 内电场阻止多子扩散 在一块本征半导体两侧通过扩散不同的杂质,分别形成N型半导体和P型半导体。 + 三价的元素 + 五价的元素 产生多余空穴 产生多余电子 因浓度差 动画 多子的扩散运动 由杂质离子形成空间电荷区 空间电荷区形成内电场 内电场促使少子漂移 内电场阻止多子扩散

PN结的单向导电性 (1) PN结加正向电压 外加的正向电压,方向与PN结内电场方向相反,削弱了内电场。于是,内电场对多子扩散运动的阻碍减弱,扩散电流加大。扩散电流远大于漂移电流,可忽略漂移电流的影响,PN结呈现低阻性。P区的电位高于N区的电位,称为加正向电压,简称正偏。 动画

(2)PN结加反向电压 外加反向电压,方向与PN结内电场方向相同,加强了内电场。内电场对多子扩散运动的阻碍增强,扩散电流大大减小。此时PN结区的少子在内电场的作用下形成的漂移电流大于扩散电流,可忽略扩散电流,PN结呈现高阻性。 P区的电位低于N区的电位,称为加反向电压,简称反偏。 在一定的温度条件下,由本征激发决定的少子浓度是一定的,故少子形成的漂移电流是恒定的,基本上与所加反向电压的大小无关,这个电流也称为反向饱和电流。 动画

总之:PN结正向电阻小,反向电阻大——单向导电性。 返回

半导体二极管 半导体二极管 二极管 :一个PN结就是一个二极管。 单向导电:二极管正极接电源正极,负极接电源负极时电流可以通过。反之电流不能通过。 符号:

半导体二极管的伏安特性曲线 第一象限的是正向伏安特性曲线,第三象限的是反向伏安特性曲线。 式中IS 为反向饱和电流,VD 为二极管两端的电压降,VT =kT/q 称为温度的电压当量,k为玻耳兹曼常数,q 为电子电荷量,T 为热力学温度。对于室温(相当T=300 K),则有VT=26 mV。

(1) 正向特性 硅二极管的死区电压Vth=0.5~0.8V左右, 锗二极管的死区电压Vth=0.2~0.3 V左右。 正向区分为两段: (1) 正向特性 正向区分为两段: 当0<V<Vth时,正向电流为零,Vth称死区电压或开启电压。 当V >Vth时,开始出现正向电流,并按指数规律增长。 硅二极管的死区电压Vth=0.5~0.8V左右, 锗二极管的死区电压Vth=0.2~0.3 V左右。

(2) 反向特性 反向区也分两个区域: 当VBR<V<0时,反向电流很小,且基本不随反向电压的变化而变化,此时的反向电流也称反向饱和电流IS 。 当V≥VBR时,反向电流急剧增加,VBR称为反向击穿电压 。

(3) 反向击穿特性 硅二极管的反向击穿特性比较硬、比较陡,反向饱和电流也很小;锗二极管的反向击穿特性比较软,过渡比较圆滑,反向饱和电流较大。 若|VBR|≥7V时, 主要是雪崩击穿;若|VBR|≤4V时, 则主要是齐纳击穿。

半导体二极管的参数 (1) 最大整流电流IF (2) 反向击穿电压VBR (3) 反向电流IR (4) 正向压降VF 二极管连续工作时,允许流过的最大整流电流的平均值。 (2) 反向击穿电压VBR 二极管反向电流急剧增加时对应的反向电压值称为反向击穿电压VBR。为安全计,在实际工作时,最大反向工作电压VRM一般只按反向击穿电压VBR的一半计算。 (3) 反向电流IR 在室温,规定的反向电压下,最大反向工作电压下的反向电流值。硅二极管的反向电流一般在纳安(nA)级;锗二极管在微安(A)级。 (4) 正向压降VF 在规定的正向电流下,二极管的正向电压降。硅二极管约0.6~0.8V;锗二极管约0.2~0.3V。

二极管基本电路分析 二极管模型 1. 理想模型 正向偏置时: 管压降为0,电阻也为0。 反向偏置时: 电流为0,电阻为∞。 2. 恒压降模型 当iD≥1mA时, vD=0.7V。

3. 折线模型(实际模型) 4. 小信号模型

二极管电路分析 1.静态分析 例1:求VDD=10V时,二极管的 电流ID、电压VD 值。 解: 1. 理想模型 正向偏置时: 管压降为0,电阻也为0。 反向偏置时: 电流为0,电阻为∞。 当iD≥1mA时, vD=0.7V。 2. 恒压降模型 3. 实际模型

例2:理想二极管电路中 vi= Vm sinωt V,求输出波形v0。 2.限幅电路 例2:理想二极管电路中 vi= Vm sinωt V,求输出波形v0。 vi t Vm VR 解: Vi> VR时,二极管导通,vo=vi。 Vi< VR时,二极管截止, vo=VR。

3.开关电路 利用二极管的单向导电性可作为电子开关 例11:求vI1和vI2不同值组合时的v0值(二极管为理想模型)。 解: vI1 vI2 二极管工作状态 D1 D2 v0 0V 0V 导通 导通 0V 0V 5V 导通 截止 0V 5V 0V 截止 导通 0V 5V 5V 截止 截止 5V

例9:判别二极管是导通还是截止。 解: 截止 截止 9V 14V 9V 1V 2.5V 12.5V 14V 12.5V 1V 2.5V 1V + 9V - + 14V - - 9V + 1V 2.5V 12.5V 14V + 12.5V - + 1V - 截止 截止 + 2.5V - + 1V -

+ 18V - 2V 2.5V 12.5V 14V 1V 导通

例4: 求整流电路的输出波形。 解: 正半周: D1、D3 导通 D2、D4 截止 负半周 D2、D4导通 D1、D3截止

vI=6V 时,输出v0的值。 vI=0V时,D截止。v0 = vI 例5: 求(1).vI=0V,vI=4V, (2). Vi=6sinωt V 时, 输出v0的波形。 实际模型 解:(1) . vI=0V时,D截止。v0 = vI vI=4V时,D导通。 折线模型 vi t vI=6V时,D导通。 6V 3V (2). Vi=6sinωt V (理想模型)

例6: 理想二极管电路中 vi=V m sinωt V,求输出波形v0。 Vm V1 V2 Vi>V1时,D1导通、D2截止,Vo=V1。 Vi<V2时,D2导通、D1截止,Vo=V2。 V2<Vi<V1时,D1、D2均截止,Vo=Vi。

例7:画出理想二极管电路的传输特性(Vo~VI)。 解:① VI<25V,D1、D2均截止。 VO=25V ② VI >25V ,D1导通,D2截止。 VI 25V 75V 100V 50V 125V VO 150V ③VI>137.5V,D1、D2均导通。 VO=100V 137.5

例8:画出理想二极管电路的传输特性(Vo~VI)。 VI VO - 5V +5V +2.5V -2.5V 当VI<0时 D1导通 D2截止 当VI>0时 D1截止 D2导通

已知二极管D的正向导通管压降VD=0.6V,C为隔直电容,vi(t)为小信号交流信号源。 例10: 已知二极管D的正向导通管压降VD=0.6V,C为隔直电容,vi(t)为小信号交流信号源。 试求二极管的静态工作电流IDQ,以及二极管的直流导通电阻R直。 求在室温300K时,D的小信号交流等效电阻r交 。 解: C R 1K E 1.5V + VD - vi(t)

二极管限幅电路:已知电路的输入波形为 v i ,二极管的VD 为0.6伏,试画出其输出波形。 例3: 二极管限幅电路:已知电路的输入波形为 v i ,二极管的VD 为0.6伏,试画出其输出波形。 解: Vi> 3.6V时,二极管导通,vo=3.6V。 Vi< 3.6V时,二极管截止, vo=Vi。

特殊二极管 稳压二极管 特殊二极管 稳压二极管是应用在反向击穿区的特殊硅二极管。稳压二极管的伏安特性曲线与硅二极管 的伏安特性曲线完全一样。 稳压二极管在工作时应反接,并串入一只电阻。 电阻起限流作用,保护稳压管;其次是当输入电压或负载电流变化时,通过该电阻上电压降的变化,取出误差信号以调节稳压管的工作电流,从而起到稳压作用。

最大功率损耗取决于PN结的面积和散热等条件。反向工作时PN结的功率损耗为 PZ= VZ IZ,由 PZM和VZ可以决定IZmax。 (2) 动态电阻rZ rZ =VZ /IZ, rZ愈小,反映稳压管的击穿特性愈陡。 (3) 最大耗散功率 PZM 最大功率损耗取决于PN结的面积和散热等条件。反向工作时PN结的功率损耗为 PZ= VZ IZ,由 PZM和VZ可以决定IZmax。 (4) 最大稳定工作电流 IZmax 和最小稳定工作电流IZmin 最大稳定工作电流取决于最大耗散功率,即PZmax =VZIZmax 。而Izmin对应VZmin。 若IZ<IZmin则不能稳压。

例12: 稳压管的稳压过程。 IR IZ Io RL Io IR Vo IZ IR Vo