ImageNet Classification with Deep Convolutional Neural Networks

Slides:



Advertisements
Similar presentations
期末考试作文讲解 % 的同学赞成住校 30% 的学生反对住校 1. 有利于培养我们良好的学 习和生活习惯; 1. 学生住校不利于了解外 界信息; 2 可与老师及同学充分交流有 利于共同进步。 2. 和家人交流少。 在寄宿制高中,大部分学生住校,但仍有一部分学生选 择走读。你校就就此开展了一次问卷调查,主题为.
Advertisements

第四屆雲豹育成企業出題 Mobric specialize in “distributed object-oriented database model” and “large-scale parallel computing”. They chose to target the IoT market.
Ensite系统指导下复杂心律失常的射频消融治疗
Unsupervised feature learning: autoencoders
大规模深度学习算法 Deep Belief Network及其应用
倒傳遞類神經網路 2006年3月14日星期二.
資料採礦與商業智慧 第四章 類神經網路-Neural Net.
自衛消防編組任務職責 講 義 This template can be used as a starter file for presenting training materials in a group setting. Sections Right-click on a slide to add.
-Artificial Neural Network- Hopfield Neural Network(HNN) 朝陽科技大學 資訊管理系 李麗華 教授.
Academic Year TFC EFL Data Collection Outline 学年美丽中国英语测试数据收集概述
Leftmost Longest Regular Expression Matching in Reconfigurable Logic
Semantic-Synaptic Web Mining: A Novel Model for Improving the Web Mining 報告者:陳宜樺 報告日期:2015/9/25.
深層學習 暑期訓練 (2017).
Euler’s method of construction of the Exponential function
-Artificial Neural Network- Adaline & Madaline
Paper Reading 2017/04/18 Yuan Xin.
Some Effective Techniques for Naive Bayes Text Classification
Applications of Digital Signal Processing
Rate and Distortion Optimization for Reversible Data Hiding Using Multiple Histogram Shifting Source: IEEE Transactions On Cybernetics, Vol. 47, No. 2,February.
Platypus — Indoor Localization and Identification through Sensing Electric Potential Changes in Human Bodies.
人機介面 Character Recognition 文字辨識
NLP Group, Dept. of CS&T, Tsinghua University
模式识别 Pattern Recognition
Differential Equations (DE)
非線性規劃 Nonlinear Programming
Source: IEEE Access, vol. 5, pp , October 2017
Seam Carving for Content-Aware Image Resizing
Creating Animated Apps (I) 靜宜大學資管系 楊子青
AOI (Automatic Optical Inspection )
光流法 (Optical Flow) 第八章 基于运动视觉的稠密估计 光流法 (Optical Flow)
Step 1. Semi-supervised Given a region, where a primitive event happens Given the beginning and end time of each instance of the primitive event.
An Introduction to Computer Science (計算機概論)
InterSpeech 2013 Investigation of Recurrent-Neural-Network Architectures and Learning Methods for Spoken Language Understanding University of Rouen(France)
Advanced Artificial Intelligence
Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi
第三章 基本觀念 電腦繪圖與動畫 (Computer Graphics & Animation) Object Data Image
Formal Pivot to both Language and Intelligence in Science
第三章 基本觀念 電腦繪圖與動畫 (Computer Graphics & Animation) Object Data Image
Unit 9 Have you ever been to a museum?
高性能计算与天文技术联合实验室 智能与计算学部 天津大学
2019/4/8 A Load Balancing Mechanism for multiple SDN Controllers based on Load Informing Strategy Miultiple controller 的 load balancing 機制,使用一個叫 Load informing.
Maintaining Frequent Itemsets over High-Speed Data Streams
前向人工神经网络敏感性研究 曾晓勤 河海大学计算机及信息工程学院 2003年10月.
中国科学技术大学计算机系 陈香兰 2013Fall 第七讲 存储器管理 中国科学技术大学计算机系 陈香兰 2013Fall.
虚 拟 仪 器 virtual instrument
Learn Question Focus and Dependency Relations from Web Search Results for Question Classification 各位老師大家好,這是我今天要報告的論文題目,…… 那在題目上的括號是因為,前陣子我們有投airs的paper,那有reviewer對model的名稱產生意見.
HITSCIR-TM zkli-李泽魁 March. 24, 2015
Google Local Search API Research and Implementation
Convolutional Neural Network
Neural Networks: Learning
Deep Learning with Limited Numerical Precision
An Efficient MSB Prediction-based Method for High-capacity Reversible Data Hiding in Encrypted Images 基于有效MSB预测的加密图像大容量可逆数据隐藏方法。 本文目的: 做到既有较高的藏量(1bpp),
BiCuts: A fast packet classification algorithm using bit-level cutting
李宏毅專題 Track A, B, C 的時間、地點開學前通知
Efficient Query Relaxation for Complex Relationship Search on Graph Data 李舒馨
磁共振原理的临床应用.
Introduction of this course
More About Auto-encoder
Speaker : YI-CHENG HUNG
主要内容 什么是概念图? 概念图的理论基础 概念图的功能 概念地图的种类 如何构建概念图 概念地图的评价标准 国内外概念图研究现状
Arguments to the main Function and Final Project
Chapter 9 Validation Prof. Dehan Luo
神经网络 Statistical Learning 方匡南 厦门大学教授 博士生导师.
Department of Computer Science & Information Engineering
Principle and application of optical information technology
之前都是分类的蒸馏很简单。然后从分类到分割也是一样,下一篇是检测的蒸馏
Experimental Analysis of Distributed Graph Systems
WiFi is a powerful sensing medium
Gaussian Process Ruohua Shi Meeting
POWER-EFFICIENT RANGE-MATCH-BASED PACKET CLASSIFICATION ON FPGA
Presentation transcript:

ImageNet Classification with Deep Convolutional Neural Networks Published in NIPS'12 Proceedings of the 25th International Conference on Neural Information Processing Systems Authors Alex Krizhevsky , Ilya Stuskever, Geoffrey E.Hinton Presenter: Chao-Chun, Sung Date: 107/10/24 Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan, R.O.C.

Computer & Internet Architecture Lab Introduction Current approaches to object recognition make essential use of machine learning methods. To improve their performance, we can collect larger datasets, learn more powerful models, and use better techniques for preventing overfitting. To learn about thousands of objects from millions of images, we need a model with a large learning capacity.----CNN Current GPUs, paired with a highly-optimized implementation of 2D convolution, are powerful enough to facilitate the training of interestingly-large CNNs. Computer & Internet Architecture Lab CSIE NCKU

Computer & Internet Architecture Lab Dataset ImageNet is a dataset of over 15 million labeled high-resolution Images belonging to roughly 22,000 categories. The images were collected from the web and labeled by human labelers using Amazon’s Mechanical Turk crowd-sourcing tool. ImageNet consists of variable-resolution images, while our system requires a constant input dimensionality . Therefore, we down-sampled the images to a fixed resolution of 256 × 256. Computer & Internet Architecture Lab CSIE NCKU

Computer & Internet Architecture Lab Back propagation(1/) Computer & Internet Architecture Lab CSIE NCKU

Back propagation(2/) Forward Propagation 再帶入activation function(sigmoid) 得out_h1=0.59326992 第一層是輸入層,包含兩個神經元i1,i2,和截距項b1;第二層是隱含層,包含兩個神經元h1,h2和截距項b2,第三層是輸出o1,o2,每條線上標的wi是層與層之間連接的權重,激活函數我們默認為sigmoid函數。 截距項表示的就是 你的迴歸模型中 解釋變數所不能解釋的值 在類神經網路中如果不使用激勵函數,那麼在類神經網路中皆是以上層輸入的線性組合作為這一層的輸出(也就是矩陣相乘),輸出和輸入依然脫離不了線性關係,做深度類神經網路便失去意義。

Computer & Internet Architecture Lab Back propagation(3/) 總誤差: E_o1=0.274811083 E_o2=0.023560026 E_total=0.29837111 Computer & Internet Architecture Lab CSIE NCKU

Computer & Internet Architecture Lab Back propagation(4/) 我們想知道w5對整體誤差造成了多少影響,用整體物誤差對w5做偏導數 Computer & Internet Architecture Lab CSIE NCKU

Computer & Internet Architecture Lab Back propagation(5/) Computer & Internet Architecture Lab CSIE NCKU

ReLU Nonlinearity(1/) (Rectified Linear Unit Nonlinearity) Saturating nonlinearities F(x)=tanh(x) F(x)= (1+𝑒 −𝑥 ) −1 (sigmoid) Activation function Activation function分成兩種 解釋哪兩種 解釋為何要用non-saturating nonlinearities (ReLU的分段線性性質能有效的克服梯度消失) (Relu會使部分神經元的輸出為0,可以讓神經網路變得稀疏,緩解過度擬合的問題。) (Relu 計算量小) Non-Saturating nonlinearities = Max(0,x) Tanh(x) Max(0,x)

Computer & Internet Architecture Lab ReLU Nonlinearity(2/) Computer & Internet Architecture Lab CSIE NCKU

Local Response Normalization 其中N是该层的feature map总数,n表示取该feature map为中间的左右各n/2个feature map来求均值。 论文中使用的参数是:k=2.n=5,gmma= 10 −4 ,beta=0.75,每一層ReluLU後接一層LRN 使用LRN来训练他们的网络,在imageNet上top-1和top-5的错误率分别下降了1.4%,1.2% 因為ReLU神經元具有無限激活,我們需要LRN來規範化。我們希望檢測具有大響應的高頻特徵。如果我們圍繞興奮神經元的局部鄰域進行標準化,則與其鄰居相比,它變得更加敏感 在大腦中觀察到這種橫向抑制,您也可以將其視為有助於加強反應。它不是承載補丁的多個模糊表示,而是推動網絡更多地向特定表示提交,釋放資源以更好地分析它 Computer & Internet Architecture Lab CSIE NCKU

Training on Multiple GPUs Use two GTX 580 GPU , because single GPU has only 3GB of memory Current GPUs are particularly well-suited to cross-GPU parallelization, as they are able to read from and write to one another’s memory directly, without going through host machine memory. the GPUs communicate only in certain layers Computer & Internet Architecture Lab CSIE NCKU

Computer & Internet Architecture Lab Reducing Overfitting Overfitting的意思就是太過追求參數完美預測出訓練數據的結果,反而導致實際預測效果不佳 underfit Overfit exactly Computer & Internet Architecture Lab CSIE NCKU

Computer & Internet Architecture Lab Data Augmentation(1/) The easiest and most common method to reduce overfitting on image data is to artificially enlarge the dataset using label-preserving transformations. The first form of data augmentation consists of generating image translations and horizontal reflections. We do this by extracting random 224*224 patches (and their horizontal reflections) from the 256*256 images and training our network on these extracted patches( (256-224)*(256-224)*2=2048 ) Computer & Internet Architecture Lab CSIE NCKU

Computer & Internet Architecture Lab Data Augmentation(2/) The second form of data augmentation consists of altering the intensities of the RGB channels in training images. Specifically, we perform PCA on the set of RGB pixel values throughout the ImageNet training set. p is eigenvector, lambda is eigenvalue 首先通过PCA,主成分分析,找出整个测试集数据中RGB像素值的主成分,然后在每次训练的图片像素中加上一定随机比例的主成分。 其中, 和 是第 i 个3 x 3 图片RGP像素值协方差矩阵的特征值和特征向量,  是随机变量,从一个均值为 0 标准差 0.1 的高斯分布中抽取。对于一次训练中的一张训练图片, 只抽取一次,下一次再用这张图片训练时再重抽取。通过这个方法,top1 的错误率下降了1%。 Computer & Internet Architecture Lab CSIE NCKU

Computer & Internet Architecture Lab Dropout The recently-introduced technique, called “dropout” , consists of setting to zero the output of each hidden neuron with probability 0.5.The neurons which are “dropped out” in this way do not contribute to the forward pass and do not participate in backpropagation. This technique reduces complex co-adaptations of neurons, since a neuron cannot rely on the presence of particular other neurons. It is, therefore, forced to learn more robust features that are useful in conjunction with many different random subsets of the other neurons. Without dropout, our network exhibits substantial overfitting. Dropout roughly doubles the number of iterations required to converge. 用來防止過於依賴某些節點,用來迫於其他節點也能夠去學習(連結),造成整體效果提升 什么原因导致了过拟合? 1.数据太少了,模型没有足够多的意外数据用来使模型更加“通用”。 2.神经网络模型的复杂度太高了!以至于模型的复杂程度高于问题的复杂程度! 缺点就是会明显增加训练时间,因为引入dropout之后相当于每次只是训练的原先网络的一个子网络,为了达到同样的精度需要的训练次数会增多。 大型网络但是数据集缺少的时候可以使用dropout防止过拟合,对于小型网络或者说不缺数据集的网络不推荐使用。 Computer & Internet Architecture Lab CSIE NCKU

Computer & Internet Architecture Lab Overlapping pooling 6 8 14 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Max pooling 6 7 8 10 11 12 14 15 16 Overlapping pooling Computer & Internet Architecture Lab CSIE NCKU

Computer & Internet Architecture Lab Details of learning We trained our models using stochastic gradient descent with a batch size of 128 examples, momentum of 0.9, and weight decay of 0.0005. where i is the iteration index , v is the momentum variable, is learning rate , is the average over the ith batch of the derivative of the objective with respect to w , evaluated at Computer & Internet Architecture Lab CSIE NCKU

Computer & Internet Architecture Lab Overall Architecture Computer & Internet Architecture Lab CSIE NCKU

Computer & Internet Architecture Lab Results Computer & Internet Architecture Lab CSIE NCKU

Computer & Internet Architecture Lab CSIE NCKU