由a生成的理想: 有单位元的交换环,(a)={a*r|rR} 无单位元的交换环,(a)={a*r+na|rR}

Slides:



Advertisements
Similar presentations
简单迭代法的概念与结论 简单迭代法又称逐次迭代法,基本思想是构造不动点 方程,以求得近似根。即由方程 f(x)=0 变换为 x=  (x), 然后建立迭代格式, 返回下一页 则称迭代格式 收敛, 否则称为发散 上一页.
Advertisements

2.5 微分及其应用. 三、可微的条件 一、问题的提出 二、微分的定义 六、微分的形式不变性 四、微分的几何意义 五、微分的求法 八、小结 七、微分在近似计算中的应用.
夯实教师教育 办好非师范教育 ---- 以外语专业为例 河北师范大学 李正栓. 1. 坚定不移地实施教师教育 A. 关键词:师范院校 师范院校是以培育师资为目的的教育机构,多属于高等教育 层级。 含 “ 师范大学 ” 或 “ 师范学院 ” 。另外,由师专升为本科的院校 多数更名为 “XX 学院 ”
电话: XXXXX 主讲: XXXXX 任务五 组织旅游线路. 本节任务:设计一条旅游线路 休闲度假天堂游 早烟台集合,乘车赴蓬莱,游览人间仙境 — 蓬莱阁风景区 ( 1.5 小时)、水城、古船馆、八仙群雕。 第一天 然后自由活动或自费游览:八仙渡海口风景区( 60 元自 理)海洋极地世界( 120.
1.3 二项式定理. [ 题后感悟 ] 方法二较为简单,在展开二项式之前根据二项 式的结构特征进行适当变形,可使展开多项式的过程简化.记 准、记熟二项式 (a + b) n 的展开式,是解答好与二项式定理有关 问题的前提,对较复杂的二项式,有时可先化简再展开,会更 简便.
商管群科科主任 盧錦春 年 3 月份初階建置、 4 月份進階建置、 5 月份試賣與對外營業。
教育研究课题的实施 北京教育科学研究院 陶文中 第一节 如何制定课题研究计划 (开题论证报告) 一般结构(框架) 1 、课题名称 2 、研究目的和意义 3 、研究的基本内容 ( 1 )理论研究(细分为若干子项目) ( 2 )实践研究( 细分为若干子项目)
1 語音下單代表號 請輸入分公司代碼 2 位結束請按#字鍵 統一證券您好 ﹗ 請輸入分公司代碼結束請按#字鍵,如不知分公司代碼請按*號。 請輸入您的帳號後 7 位 結束請按#字鍵 請在聽到干擾音時輸入您的密碼結束請按#字鍵 主選單一覽表 委託下單請按 1 ; 取消下單請按 2 成交回報請按.
人權教育融入教學與 法治教育 彭巧綾 蔡永棠 閱讀理解 六頂思考帽 以概念圖整理閱讀理解 指導學生運用關鍵詞,繪製概 念圖,並分享修正。
义务教育课程标准实验教材 四年级下册 语文园地六 词语盘点 习作 口语交际 我的发现 日积月累 展示台.
普陀区税务局 营业税改征增值税试点 最新政策 货物和劳务税科 2013年7月.
被 江 泽 民 残 酷 迫 害 致 死 的 法 轮 功 学 员 李竟春,女,1954年3月16日出生,江西省九江市人。于2000年12月18日到北京证实大法,关押在北京市门头沟看守所遭受非人的迫害。在狱中李竟春绝食抗争被管教骗喝一瓶“可疑的豆浆”后一直咳嗽不断,发烧呕吐,吐出白色有强烈异味液体,于2000年1月4日死亡。
第八编 清代文学 清代文学绪论 第一章 清代诗词文 第二章 《长生殿》与《桃花扇》 第三章 《聊斋志异》 第四章 《儒林外史》
高等数学 A (一) 总复习(2).
专利技术交底书的撰写方法 ——公司知识产权讲座
視力不良學(幼)童 篩檢與矯治常見問題 長庚醫院 兒童眼科 楊孟玲 醫師.
描写家乡的一处景物.
问卷调查法.
第四章 保税货物的通关(上).
第三章 企业主要经济业务核算 学习目的和要求:通过对工业企业的主要经济业务的了解,要求学生掌握、巩固帐户与借贷记帐法的相关知识及其运用,并进一步了解和熟悉会计核算方法。 本章重点与难点问题是:企业在各阶段的业务核算 内容提要:本章首先介绍企业在各不同阶段(企业创立阶段、企业供应阶段、企业生产阶段、企业销售阶段等)的业务内容;然后介绍了各阶段业务核算所需设置的帐户及其帐户的功能与结构;最后举例说明各阶段业务的核算。
校本培训 常州市新北区新桥实验小学 金文英 团体活动助人成长 校本培训 常州市新北区新桥实验小学 金文英
2014年造价员资格考试 建设工程造价管理基础知识 徐建元.
教師權益─ 退撫制度變革修法 吳忠泰 退撫制度變革修法電子檔可在全教總網站下載分享
说课课件 感悟工业革命力量,闪耀科技创新光辉 ----《走向整体的世界》教学设计及反思 爱迪生 西门子 卡尔·本茨 诺贝尔 学军中学 颜先辉.
机电设备概论 安全管理概述 XXXXX.
行政机关公文写作规范 简 析 贵州省政府办公厅文书处处长 杨梅
【 准 备 上 课 啦 】 心 境 —— 快 乐 源 泉 学习 — 悦于心 聚于魂 化于行.
第七章 无形资产.
地方預算執行規範介紹 行政院主計總處公務預算處何視察蓓 地方歲計人員研習班第17期 102年3月
《幼儿园模拟教学》(第一章 第二章) 呼伦贝尔学院 教育科学学院 学前教育教研室.
广州事业单位面试专项练习 主讲:蔡厚佳 微博:腰果公考菜菜爱做梦 2016年04月29日-05月05日.
青岛市农村实用人才高等学历教育 2013年秋季入学测试考前练兵 语文----写作部分辅导
房地产开发项目经营情况 (X204-1表).
幼儿园现代管理的思考与实践.
童軍志工服務報告 陽光基金會 愛心捐活動 第2組 報告人:秦惠芬 製作人:江妮錡.
面试与面试技术.
基层违纪违法案件 查办的基本程序 基本要求和案例解析 学 思 践 悟 基层违纪违法案件 查办的基本程序 基本要求和案例解析 内蒙古纪委案件审理室 方瑛 2015年5月24日.
美国史 美利坚合众国创造了一个人类建国史的奇迹,在短短230年的时间从一个被英帝国奴役的殖民地到成为驾驭全世界的“超级大国”、“世界警察”,美国的探索为人类的发展提供了很宝贵的经验。
函 文种常识 结构写法 注意事项 例文赏析与训练.
学习情境四 旅行社接待业务的管理 【学习目标】 了解旅行社接待业务的性质与特点; 熟悉旅行社门市接待业务与管理;
邯郸摸底考试网阅分析25题(3) 河北广平县第一中学 于沙.
发生火灾怎么办 后窑镇中心小学 吴琼.
太阳能概述   太阳能是由太阳内部热核反应所释放出的光能、热能及辐射能量。它每年辐射到地球上的能量达1813亿吨标准煤,相当于全世界年需要能量总和的5000倍,是地球上最大的能源。 广东工业大学 材料能源学院.
强化。心系.
年金改革的是與非 吳忠泰.
勞保局人員.
企业税收筹划与税务风险管理 暨南大学财税系 沈肇章.
走向对话的地理课堂教学 海盐高级中学 徐海群.
“深入推进依法行政加快建设法治政府” -《法治政府建设实施纲要》解读
下周起,代数结构与数理逻辑课程上课教室改在2108教室
二、环同态 定义14.9:对于环[R;+,*]与环[R';+',*'],若存在映射:RR',使得对任r1,r2R有: (r1+r2)= (r1)+'(r2), (r1*r2)=(r1)*'(r2), 则称为R到R'的同态映射;当(R)=R'称两个环同态;当为一一对应时两个环同构;当R'R时称R到R'的同态为自同态,同构为自同构。
仿写训练 华罗庚实验学校西宁分校 钟卫平.
第六节 可降阶的二阶微分方程 一、 型的微分方程 二、 型的微分方程 三、 型的微分方程.
三、进项转出.
求职信.
102年度「農業旅遊特色商品發展暨行銷活動計畫」研提原則說明
企业秘书写作 主讲教师:黄巨龙.
四种命题 班级:C274 指导教师:钟志勤 任课教师:颜小娟.
§2 无穷积分的性质与收敛判别.
第五章 定积分及其应用.
田明泉 从山东省高考数学试题变化 看2013年二轮复习 田明泉
奧運時刻 具名贊助建議書 2016年8月6日至8月22日17天.
导数的应用 ——函数的单调性与极值.
因式定理.
認識多項式 1 多項式的加法 2 多項式的減法
定理14.17:F[x]为域F上的多项式环, 商环F[x]/(p(x))是域, 当且仅当p(x)为F[x]上的不可约多项式。
推论14.2:f(x), (x-a)F[x],则f(x)被(x-a)除的余式为f(a)。
直流电桥电路 §3-7 1.掌握直流电桥电路的组成。 2.掌握直流电桥电路平衡的条件及特点。 3.掌握直流电桥电路在生产实际中的应用。
二、代数扩域 定义15.7:当域F的扩域K中每个元素都是F的代数元时,称K为F的代数扩域。当1,…, n为域F上的代数元时,记F(1,…, n)为包含F和1,…, n的最小代数扩域,当n=1时,又称它为F的单代数扩域。
§4 理想与商环 一、理想 定义14.13:[R;+,*]为环, 若I ,IR,关于+,*运算满足条件:
Presentation transcript:

由a生成的理想: 有单位元的交换环,(a)={a*r|rR} 无单位元的交换环,(a)={a*r+na|rR} 定理:设S,SR,定义(S)为满足如下条件的最小子集: (1)aS,则a(S) (2)a,b(S),则a-b(S) (3)a(S),rR,则a*r,r*a(S) 则[(S);+,*]是环[R;+,*]的理想。 定义:设S,SR,(S)为满足上述定理条件的最小子集,则称 [(S);+,*]是环[R;+,*]的由S生成的理想。

定义15.14:由环R中一个元素生成的理想称为该环的主理想。如果一个环的所有(真)理想是主理想,则称该环为主理想环 例:[Z;+,*]是主理想环。 分析:关键是证明对任意理想D,都能找到生成元. 证明:若D={0},成立. 若D{0},则设法找生成元. 取D中绝对值最小的非零元b, 证明b是D的生成元

定理15.13:域F上的多项式环F[x]是主理想环。 分析:与前面证明方法类似. 证明:若I={0},成立 对多项式,则应取I中非零的、多项式次数最小的p(x). 这样就要证明对任一理想,可表示成 {p(x)f(x)|f(x)F[x],p(x)为该理想中次数最小的}. 需要利用定理15.8 定理15.8:对f(x)F[x],g(x)F[x], g(x)0,存在唯一的q(x),r(x)F[x], degr(x)<degg(x)或r(x)=0,使得: f(x)=g(x)q(x)+r(x)。

二、商环 设[I;+,*]是环[R;+,*]的理想, [I;+]为[R;+]的正规子群, 在R中作I的陪集I+r={i+r|iI}。 I+r=r+I 子群的性质知:对任两元r1r2, r1,r2R,总有|I+r1|=|I+r2|, (I+r1)∩(I+r2)=或I+r1=I+r2 构造R的一个商集:R/I={I+r|rR}

在R/I上定义为: (I+r1)(I+r2)=I+(r1+r2) 定义为: (I+r1)(I+r2)=I+(r1*r2) 定理15.14:如上述定义的[R/I;,]为环 证明:因为I关于+是R的正规子群,因此 [R/I;]不仅是代数系统,而且是群. 又因为[R;+]是交换群,故[R/I;]也是交换群. 下面考察[R/I;]是否为代数系统,半群 关于是否满足分配律.

定义15.15:设[I;+,*]为环[R;+,*]的理想, 称[R/I;,]为环[R;+,*]关于理想I的商环, 简记为R/I或R-I。 设[F[x];+,*]是域F上的多项式环, p(x)F(x), 且degp(x)=n>0,则(p(x))={p(x)*h(x)|h(x) F(x)}是多项式环的理想. [F[x]/(p(x));,]是商环,其零元(的单位元)是(p(x))+0, 其单位元是(p(x))+1,这里0是F[x]的零元,1是F[x]的单位元.

F[x]/(p(x))=

[Z2[x];+,*]是Z2上的多项式环。取p(x)= x2+x+1,则:Z2[x]/(p(x))={(p(x)), (p(x))+1, (p(x))+x,(p(x))+(x+1)},简化为{0,1,x,x+1}

定理15.17:F[x]为域F上的多项式环, 商环F[x]/(p(x))是域, 当且仅当p(x)为F[x]上的不可约多项式。 反证,若p(x)可约,则存在h(x), g(x)F(x), 且0<degh(x),degg(x)<degp(x), 使得p(x)=h(x)*g(x) 因此h(x),g(x)(p(x)),即 (p(x))+h(x)和(p(x))+g(x)都不是F[x]/(p(x))的零元.但 ((p(x))+h(x))((p(x))+g(x))=(p(x))+h(x)g(x) =(p(x))+p(x)=(p(x))为F[x]/(p(x))的零元 而F[x]/(p(x))是域,无零因子.

(2) p(x)为F[x]上的不可约多项式,证明商环F[x]/(p(x))是域 首先可以知道F[x]/(p(x))是交换环.且有单位元(p(x))+1. 关键是考虑F[x]/(p(x)) 中每个非零元是否都存在逆元. 对F[x]/(p(x))中任意非零元(p(x))+r(x),其中degr(x)<degp(x), 利用p(x)不可约,可得(p(x),r(x))=aF*. 由定理15.9(2),存在s(x),t(x)F(x),使得 p(x)s(x)+r(x)t(x)=a 因此(p(x))+a-1t(x)是(p(x))+r(x)的逆元 推论15.4:Zp=Z/(p)为域当且仅当p为素数

例:讨论商环Z3[x]/(x4+1)是否为域。 x4+1=(x2+2x+2)(x2+x+2), 所以Z3[x]/(x4+1)不是域

Z3[x]/(x2+1) x2+1在Z3上不可约, Z3[x]/(x2+1)为域 Z3[x]/(x2+1) ={ax+b|a,bZ3} 共有9个元素 省略了(x2+1)。 常以这种简化的方式写商域中的元素 各非零元素的逆。

作业:P317 28,31,32,35,36