A Revised Approach to Ice Microphysical Process for the Bulk Parameterization of Clouds and Precipitation SONG-YOU HONG, JIMY DUDHIA, SHU-HUA CHEN 學生:陳文彬 指導老師:楊明仁老師
Introduction CRMs(cloud-resolving models)、CEMs(cumulus ensemble models)跟GCM的合併使用 RH83(Rutledge and Hobbs)、D89(Dudhia 1989) 本篇文章即是介紹修正模式中的微物理計算過程,並探討其影響。 CRMs是一種cloud-scale and circulation交互作用的方法….最近被使用 為了研究對流系統的特徵,有些學者開始使用雲解析模式(Cloud-resolving model,CRM),來了解對流系統的發展過程,用以改進積雲參數化的表現能力
Modifications of microphysical process introduce to a commonly used bulk cloud scheme 利用WRF simple ice and mixing phase 來修改 利用D89和RH83更正模組
a.Sedimentation of falling ice crystal HD90(Heymsfield and Donner 1990) ρ空氣密度,qI雲冰混和比 New velocity-diameter formula HI2000(Heymsfiled and Iaquinta)
b.Ice mass, diameter, and number concentration relationship (Fletcher 1962) column bullet rosette c 3.02*107 5.38*107 2.76*108 d 0.72 0.75 0.8 利用冰晶的平均重量在用HI2000帶入
取single bullet來修正模式
利用single bullet的粒子數濃度求出來各項的數值
c.Intercept parameter for snow Houze et al.1979 Note : 最大值為2*108(m-4) From Marshall and Palmer, 1948
d.Initiation of cloud ice crystal qsi:冰的飽和混合比 q=water vapor mixing ratio qI0=NI0MI0/ρ 條件\是在過飽和且還沒結成冰時
(a)Ice nuclei number concentration (b)Initial ice crystal amount (-43,1) (a)Ice nuclei number concentration (b)Initial ice crystal amount
e.Vapor deposition of a small ice crystal(PIsd) SI=qSI/q AI、BI熱力和動力函數 RH83、D89 This study
f.Accretion of cloud ice by snow (Pacr)
g.Conversion of ice crystals to snow(PautI) qIcrit(MImaxNI/ρ)為autoconversion 的門檻值 Fletcher : D89, RH83 qicrit has small range of T : 0.1 and 1 gkg-1 for –27 and –32C This study qicrit :18gkg-1, at T=-40C, P=300 mb
h.Sublimation and deposition grower of snow/evaporation of rain(Pres) 當雨滴蒸發時,代表水汽未達到飽和,但是以冰相粒子而言,有可能已經達到冰的飽和,使得冰晶成長 μ=動力黏滯係數
i.Autoconversion of cloud water to rain (Pautc) (Kessler 1969) qc0 = critical liquid water content for cloud water 在Tripoli and Cotton 1980(TC80)對參數qC0、α做了物理上的定義 qC0代表產生autoconversion的門檻值
3. Numerical experiments Two sets of experiments are carried out : An idealized 2D thunderstorm case A 3D real-data simulation of a heavy rain event KF cumulus parameterization for subgrid scale precipitation process
An idealized 2D thunderstorm case 2-D domain 在x方向有201點,間距為250m 垂直分80層 積分一小時,time step=3s 初始值,在模式中心有一半徑4km的暖胞,最大溫度擾動為3K 地表風速12ms-1,遞減到2.5km時風速為零 為開放邊界,沒有科氏力和摩擦力
qci qrs
細實線(Exp1) 點線(Exp2) 虛線(Exp3) 粗實線 (Exp4) 3、4 1、2 細實線(Exp1) 點線(Exp2) 虛線(Exp3) 粗實線 (Exp4)
A 3D real-data simulation of a heavy rain event 目的:利用新的參數模擬降水和上層大氣大尺度系統特徵 時間:25 Jun.1997(Korea) 降水特徵:在西部有一個降水最大值,在南端也有數個不連續的大降水 大尺度特色:在黃海有一個低壓系統(中緯度氣旋)
A 3D real-data simulation of a heavy rain event
The simulation of the real case(setting) 初始和邊界條件來自NCEP 利用MM5來加強其高層的探空資料並讓WRF model使用 48小時的模擬時間(1200 UTC 25 Jun. 1997) 水平網格間距45km共80點,中心位於Korea peninsula 使用Lambert-conformal conic projection 垂直分23層
The simulation of the real case 溫度是利用NCEP資料,降水是利用測站降水內插到各網格點,括弧中代表利用cloud5 Bias score=the simulation/the observation
Vertical profiles, at 0000 UTC 25 Jun 1997 3 4 1 1 3 2 4 Vertical profiles, at 0000 UTC 25 Jun 1997
The 24-h accumulated precipitation (mm) (a)Exp1 and (b) Exp4.
平均1小時累積降水(domain-average) 南方局部降水,主要因素跟西方降水不同,因為太平洋 副熱帶高壓帶來暖濕空氣使得不穩定度提高,所以積雲 參數法在此區域重要 平均1小時累積降水(domain-average) (a) subgrid-scale (implicit) rain and (b) grid-resolvable (explicit) rain
垂直積分cloud ice/water混合比(1200UTC 25 Jun.1997) (a) is Exp1, (b) is Exp4
Exp1~Exp4間的cloud ice/water的濃度、300hpa平均溫度 2 1 3 2 4 3 4 Exp1~Exp4間的cloud ice/water的濃度、300hpa平均溫度 Exp1 (thin solid),Exp2(dotted),Exp3(dashed),and Exp4(thick solid) and the analyses (solid line with open circles).
Conclusion Ideal case Heavy rain fall 相對於雲微物理過程,考慮冰晶沉降作用對於降水和雲的模擬,影響較小。 冰晶沉降造成了anvil ice的減少,雪花增加 可以產生類似有graupel的雲結構產生 Heavy rain fall 雲微物理和沉降作用改善了雲和溫度的模擬 模式在較冷的環境中產生較少的冰晶(接近觀測)
Exp1(實線) NORA=no radiation(點線) NOSW=no short wave radiation(點虛線) NOLW=no long wave radiation(長虛線)