Fei Chen and Jimy Dudhia April 2001 (Monthly Weather Review) 報告:陳心穎

Slides:



Advertisements
Similar presentations
 泸定县是进藏出川的咽喉要道,素有甘孜州东大门之称。 气候冬无严寒,夏无酷暑,冬季干燥温暖,年平均气温 16.5 ℃,年平均无霜期 279 天,年均降雨量 664.4mm 。境 内平坝、台地、山谷、高山平原、冰川俱全,为世界所罕 见。泸定以 “ 红色名城 ” 著称,有 1705 年康熙皇帝亲赐御笔.
Advertisements

2011年度汇报 科技部973项目 《日地空间天气预报的物理基础与模式研究》 第六课题组:空间天气预报方法和技术的应用与集成研究
课首 第二章 有理数 苏科版 • 七年级 《 数 学 ( 上 )》 2.1 比零小的数 龙都初级中学 彭生翔
山东大学 生命科学学院 生态学与生物多样性研究所
牙齒共振頻率之臨床探討 論 文 摘 要 論文名稱:牙齒共振頻率之臨床探討 私立台北醫學院口腔復健醫學研究所 研究生姓名:王茂生 畢業時間:八十八學年度第二學期 指導教授:李勝揚 博士 林哲堂 博士 在口腔醫學的臨床診斷上,到目前為止仍缺乏有效的設備或方法可以評估或檢測牙周之邊界狀態。臨床上有關牙周病的檢查及其病變之診斷工具,
從研究生指導經驗談 研究生如何管理論文研究
實證醫學專題報告 服用綜合維他命,未來發生心血管疾病的機率有多少?
十一個笑話 十一個道理 LSM制作.
Chapter 5 research Methods in Social Medicine
道路交通管理 授课教师:于远亮.
Yongyi Min Environment Statistics Section UN Statistics Division
分析抗焦慮劑/安眠劑之使用的影響因子在重度憂鬱症及廣泛性焦慮症病人和一般大眾的處方形態
微生物燃料电池 王金玉
透過成長在矽基板上的氧化緩衝層與嵌入式氧化釔分佈布拉格反射鏡去增強氮化鎵系列的uv光檢測器響應
Integration of Eco-hydrological Process in Heihe River Basin
Student : Shian-yi yang Student ID:M99L0107
袁 星 谢正辉,梁妙玲 中国科学院大气物理研究所
讲座5 目标、范围管理与需求工程.
Speaker: Kai-Wei Ping Advisor: Prof Dr. Ho-Ting Wu 2014/06/23
Differential Equations (DE)
《大洋环流和海气相互作用的数值模拟》 第九讲 中高纬度海气相互作用 周天军
中国的环境空气质量监测Ambient air quality monitoring in P.R.China
Responsibility Accounting
ECCE Summer School for Advanced Study in Climate and Environment
啟示錄 人 子 七 教 會 寶 座 七 印 七 號 龍 與 獸 七 碗 巴 比 倫 千 禧 年 前 後 新 耶 路 撒 冷 第9章(第5號)
製程能力分析 何正斌 教授 國立屏東科技大學工業管理學系.
Chapter 1 Introduction to Climate System
Coupling TRIGRS and TOPMODEL in shallow landslide Prediction
生物芯片技术 刘超 李世燕 谢宏林
報告者:紀瑋欣(Wei-Hsin Chi) 指導老師:楊明仁老師(Prof. Ming-Jen Yang)
Reporter: Prudence Chien
有机酸类化感物质对甜瓜的化感效应 张志忠1,孙志浩1,陈文辉2,林文雄3, *
參加2006 SAE年會-與會心得報告 臺灣大學機械工程系所 黃元茂教授
A Revised Approach to Ice Microphysical Process for the Bulk Parameterization of Cloud and Precipitation SONG-YOU HONG, JIMY DUDHIA, SHU-HUA CHEN January2004,
校園網路架構介紹與資源利用 主講人:趙志宏 圖書資訊館網路通訊組.
DOE II建築節能模擬軟體介紹 -空調節能設計篇
報告人:林冠丞 指導教授:陳偉業 班級:碩研資管一甲 學號:MA490212
辐射带 1958年:探险者一号、探险者三号和苏联的卫星三号等科学卫星被发射后科学家出乎意料地发现了地球周围强烈的、被地磁场束缚的范艾伦辐射带(内辐射带)。 这个辐射带由能量在10至100MeV的质子组成,这些质子是由于宇宙线与地球大气上层撞击导致的中子衰变产生的,其中心在赤道离地球中心约1.5地球半径。
Energy, temperature and hea
Measurement of the continuum Ruds, Ruds(c)+Ψ(3770) and Rhad values in the range from to GeV 张达华 (for BES Collaboration) Institute of High Energy.
句子成分的倒装(1).
高性能计算与天文技术联合实验室 智能与计算学部 天津大学
IMPROVE-2 期間內於Oregon 海岸山脈 & Cascades的對流動力及地形修改
前向人工神经网络敏感性研究 曾晓勤 河海大学计算机及信息工程学院 2003年10月.
Design and Analysis of Experiments Final Report of Project
Dual-Aircraft Investigation of the Inner Core of Hurricane Nobert
經濟計量到政策研究 – 從劉大中院士的工作談起 管中閔 中央研究院經濟研究所 2008 年 10 月 22 日.
L. Ruby Leung and Yun Qian 2003 J.Hydrometeor.,4, 報告:陳心穎
An Evaluation of a High-resolution Hydrometeorological Modeling System for Prediction of a Cool-season Flood Event in a Coastal Mountainous Watershed Kenneth.
Journal of Applied Meteorology, 39,
第九章 明暗分析 Shape from Shading SFS SFM SFC SFT …… SFX.
Yang, Y., and Y.-L. Chen, 2008: Mon Wea. Rev., 136,
基于非饱和土壤水流模型及地面点观测的土壤湿度数据同化方案
Intercomparison of bulk microphysics schemes in model simulations of polar lows Prudence Chien Wu, L., and G. W. Petty, 2010: Intercomparison.
納莉(2001)颱風之數值模擬研究 A Modeling Study of Typhoon Nari (2001)
数据分析案例介绍·2014 技术及培训专员:甄晓杰
Sensitivity of Orographic Precipitation to Changing Ambient Conditions and Terrain Geometries: An Idealized Modeling Perspective BRIAN A. COLLE 2004 ,JOURNAL.
Dual-Doppler radar analysis of a near-shore line-shaped convective system on 27 July 2011, Korea: a case study J-T. Lee et al. (2014) Tellus Paper Review.
WOLFGANG LANGHANS, JUERG SCHMIDLI, and CHRISTOPH SCHAR J. Atmos. Sci
96學年度第二學期電機系教學助理課後輔導進度表(三)(查堂重點)
Yang, M.-J., D.-L. Zhang, X.-D. Tang, and Y. Zhang, J. Geophys. Res.
More About Auto-encoder
這個距離可以是直線的長度,也可以是曲線的長度。
动词不定式(6).
Monsoonal influence on Typhoon Morakot (2009). Part II: Numerical study. Liang, J., L. Wu*, X. Ge, and C.-C. Wu, 2011: Monsoonal influence on Typhoon   Morakot.
利用循环Hybrid ETKF-3DVAR 改进黄海海雾数值模拟的初始场
簡單迴歸分析與相關分析 莊文忠 副教授 世新大學行政管理學系 計量分析一(莊文忠副教授) 2019/8/3.
之前都是分类的蒸馏很简单。然后从分类到分割也是一样,下一篇是检测的蒸馏
歡迎光臨! 講師:台灣科技大學企管系林孟彥,
CAI-Asia China, CATNet-Asia
Presentation transcript:

Fei Chen and Jimy Dudhia April 2001 (Monthly Weather Review) 報告:陳心穎 Coupling an Advanced Land Surface-hydrology Model with the Penn State-NCAR MM5 Modeling System. PartⅡ:Preliminary Model Validation Fei Chen and Jimy Dudhia April 2001 (Monthly Weather Review) 報告:陳心穎

Introduction 在此文章,我們藉由合併模式的模擬和觀測資料的比較, 來評定合併模式MM5-New LSM。 為了比較是否有所改善,所以跟MM5-Slab Model及觀測 值作比較。 觀測資料是使用First International Satellite Land Surface Climatology Project(ISLSCP) Field Experiments (FIFE),這 個密集資料是用來確認大尺度及中尺度模式的模擬結果。

a.FIFE observations b.NCEP 4-km national precipitation analysis Validation data a.FIFE observations b.NCEP 4-km national precipitation analysis

FIFE observation The data were collected over the Konza prairie in Kansas during the FIFE experiment (Sellers et al.1992) 1987 FIFE data used in this study are 1.area-average observations( ) 2.30-min averages at about 10 stations 3.include wind,air temperature and humidity,precipitation,incoming and reflected solar radiation,net radiation and incoming longwave radiation,a radiometric measure of the ground surface temperature,and soil temperature at 10 and 50 cm below the surface .

The dataset also includes the spatial-mean surface sensible heat ,latent heat,and ground heat fluxes averaged over 17 selected surface flux stations . The upper-air temperature and humidity data were from the visual tracked radiosondes. (Sugita and Brutsaert 1990)

NCEP 4-km national precipitation analysis A prototype,real-time,hourly,multisensor National Precipitation Analysis has been developed at the National Center for Environmental Prediction(NCEP)in cooperation with the Office of Hydrology (OH). Approximately 3000 automated,hourly digital raingauge observations .(48 states) 2. Hourly digital precipitation (HDP)radar estimates are obtain via the Automation of Field Operations and Services network.

Model configuration

Two sets of numerical experiments were conducted for several cases for 1987 and 1997 Four control simulations were designed for the 1987 case in order to verify the model against the FIFE observations. 1. 0000 UTC 4 June-0000 UTC 6 June (a clear sky day) 2. 0000 UTC 24 June-0000 UTC 26 June (a convective rain case) 3. 0000 UTC 9 August-0000 UTC 11August (a cloudy day) 4. 0000 UTC 12 August-0000 UTC 14 August (a large-scale rainfall case) The data from the NCEP-NCAR reanalyses

Two 48-h MM5 simulations were conducted for the 1997 case 0000 UTC 24 June-0000 UTC 26 June 0000 UTC 4 July-0000 UTC 6 July (both having large-scale frontal precipitation) The data from the NCEP EDAS (Eta Model Data Assimilation System analyses) This simulations used 23 vertical levels (with the model top at 100 mb). Three horizontal domains nested with two-way interaction with grid sizes of 90,30,and 10 km. inner domain is centered on the FIFE site in Kansas (for 1987 simulations). the ARM South Great Plains site in Oklahoma(for 1997 simulations)

Slab model 1.there is no explicit representation of vegetation effects. 2.the soil moisture remains constant during a simulation. 3.the soil moisture is defined in term of a moisture availability that depends on land use type.

Comparison results and discussions 1.validation of model surface heat fluxes 2.Evolution of temperature and humidity in the boundary layer 3.influence of the treatment of land surface processes on precipitation

Validation of model surface heat fluxes 1987 4 June-6 June(a clear sky day) 1987 12 August-14 August (precipitation)

1987 4 June-6 June(a clear sky day) Solar downward radiation 因為MM5中radiation scheme 沒有作aerosol的處理 Surface radiation forcing 夜晚有很好的長波輻射量估計

1987 4 June-6 June(a clear sky day) Latent heat flux 因為slab沒有複雜的植物物 理及蒸發散過程的交互作用 New LSM有明顯改善 100 W m-2 Sensible heat flux 初夏有很大的蒸發量,所以會 高估,但也比slab有改善 取得較好的Bowen ratio

1987 4 June-6 June(a clear sky day) 因為可感熱通量的高估,所以地表熱通量會較早到達最大值,也 可能是因為土壤溫度轉換到大氣邊界循環延遲。 地表能量平衡是不保守的,而模式是保守的,而地表溫度是由地 表能量平衡算出來的。 較暖 Ground heat flux Surface skin temperature

1987 4 June-6 June(a clear sky day)

1987 4 June-6 June(a clear sky day) 雖然在地表溫度有偏高,但是2-M溫度卻有較好的估計。(上午) 下午-晚間的溫度下降有延遲。 因為New-LSM有露的過程及正確的蒸發量,所以有呈現白天溼度 上升,晚上溼度下降的主要特徵 2-M air temperature 2-M mixing ratio

1987 12 August-14 August (precipitation) Solar downward radiation 第一天因為spinup(沒有雲) ,或沒有模擬出雨量 所以高估,第二天因為雨量 太多,所以低估。 Surface radiation forcing

1987 12 August-14 August (precipitation) Latent heat flux 因為第一天沒有模擬出雨量 ,所以高估。 Sensible heat flux

1987 12 August-14 August (precipitation) 因為第二天潛熱通量和可感熱通量的低估,所以兩圖白天都有 下降的趨勢 New LSM 有改善 2-M temperature 2-M mixing ratio

1987 12 August-14 August (precipitation) 第一天沒有模擬出雨量,第二天雨量過多 第一天土壤水分下降是因為吸收到根部區,第二天增 加到接近田間含水量(第一層),所以流到第二層。 1st layer 2nd layer 3rd layer 接近田間含水量 Precipitation volumetric soil moisture in new LSM

Evolution of temperature and humidity in the boundary layer

Potential temperature 4 June 1987 1200 UTC 1530 UTC Mixing layer Potential temperature slab因為過多的可感熱,所以較暖 2330 UTC 1830 UTC

5 June 1987 1200 UTC 1530 UTC Potential temperature 2330 UTC 1830 UTC

5 June 1987 between 24-48-h and 0-24-h simulation 1200 UTC 1530 UTC Potential temperature 2330 UTC 1830 UTC

4 June 1987 1200 UTC 1530 UTC Mixing ratio 2330 UTC 1830 UTC

5 June 1987 1200 UTC 1530 UTC Mixing ratio 2330 UTC 1830 UTC

4 June 1987 ( increase 0.1 in initial soil temperature) 1200 UTC 1530 UTC Potential temperature 2330 UTC 1830 UTC

4 June 1987 ( increase 0.1 in initial soil temperature) 1200 UTC 1530 UTC Mixing ratio 2330 UTC 1830 UTC

Influence of the treatment of land surface processes on precipitation 1)Rain case of 24 June 1997 2)Rain case of 4 July 1997

1)Rain case of 24 June 1997 From 0000-1200 UTC 24 June 1997 NEXRAD analysis New LSM Slab

1)Rain case of 24 June 1997 From 0000-1200 UTC 25 June 1997 NEXRAD analysis Slab New LSM

2)Rain case of 4 July 1997 From 0000-1200 UTC 4 July 1997 NEXRAD analysis Slab New LSM

2)Rain case of 4 July 1997 From 0000-0300 UTC 5 July 1997 NEXRAD analysis Slab New LSM

Summary 在晴朗的天氣, 1. 太陽輻射的高估可能是因為MM5模式中的輻射方法沒有對 懸浮微粒的處理。 2. 新的LSM有取得正確的Bowen ratio。 3. 因為MM5-LSM有較精確的地表熱通量,所以在近地表的 溫度和溼度也比較接近觀測值。 4.在MM5-LSM和MM5-Slab都使用非局部的MRF PBL 參數化方法, 估計白天對流邊界層的溫度和溼度的發展,由於小尺度的異 質效應或大尺度平流,使得MM5模擬失敗。 在豪雨的天氣, 1. 模式在18h的模擬中,雲出現的太少、太慢,導致太多的 地表輻射量,所以地表熱通量也多。第二天相反。