9.5 差分放大电路 差分放大电路用两个晶体管组成,电路结构对称,在理想情况下,两管的特性及对应电阻元件的参数值都相同,因此,两管的静态工作点也必然相同。 T1 T2 RC RB +UCC + ui1  iB iC ui2 RP RE EE iE + uO  9.5.1 静态分析 在静态时,ui1=

Slides:



Advertisements
Similar presentations
第一章 餐饮服务程序 学习目的: 掌握餐饮服务四个基本环节的内容 正确表述和运用各种餐饮形式的服务程序 熟悉并利用所学知识灵活机动地为不同需求的 客人提供服务.
Advertisements

肖 冰 深圳市达晨创业投资有限公司 副总裁 深圳市达晨财信创业投资管理公司 总裁
信阳师范学院 物理电子工程学院 实验室 马建忠
第3章 分立元件基本电路 3.1 共发射极放大电路 3.2 共集电极放大电路 3.3 共源极放大电路 3.4 分立元件组成的基本门电路.
石家庄迅步网络科技有限公司 联系人:张会耀 电话:
第三章 语音.
第4章 差动放大电路与集成运算放大器 4.1差动放大电路 4.2集成运算放大器.
食品营养成分的检验. 食品营养成分的检验 科学探究的一般过程: 形成假设 设计方案 收集数据 表达交流 处理信息 得出结论 探究:馒头和蛋糕中是否含有淀粉和脂肪 假设:馒头和蛋糕中含有淀粉和脂肪.
第五章 农业政策的评估及调整 学习目标 农业政策评估的标准、程序 主要内容 第一节 评估原则与标准 第二节 评估方法与程序
电子技术 模拟电路部分 第四章 差动放大器与 集成运算放大器.
主要内容: 1.场效应管放大器 2.多级放大器的偶合方式 3.组容耦合多级放大器 4.运算放大器电路基础
多层建筑:一般认为8层以下的建筑为多层建筑。 多层、高层结构体系一般采用框架、框架剪力墙、剪力墙和筒体结构等。 框架结构体系
处在十字路口的中日关系.
晶体管及其小信号放大 (2).
第五章 模拟集成电路基础 集成电路运算放大器中的电流源 差分式放大电路 集成运算放大器.
第3章 直接耦合放大电路和 集成运算放大器 3.1 直接耦合放大电路 3.2 差动放大电路 3.3 集成运算放大器.
+UCC RB1 RC C2 C1 RL RB2 C0 ui RE uo CE
第四章 功率放大电路 4.1 功率放大电路的一般问题 4.2 甲类功率放大电路 4.3 乙类互补对称功率放大电路
第 10 章 基本放大电路 10.1 共发射极放大电路的组成 10.2 共发射极放大电路的分析 10.3 静态工作点的稳定
现代电子技术实验 4.11 RC带通滤波器的设计与测试.
晶体管及其小信号放大 -共集(电压跟随器) 和共基放大电路 -共源(电压跟随器).
第11章 基本放大电路 本章主要内容 本章主要介绍共发射极交流电压放大电路、共集电极交流电压放大电路和差分放大电路的基本组成、基本工作原理和基本分析方法,为学习后面的集成运算放大电路打好基础。
第7章 基本放大电路 放大电路的功能是利用三极管的电流控制作用,或场效应管电压控制作用,把微弱的电信号(简称信号,指变化的电压、电流、功率)不失真地放大到所需的数值,实现将直流电源的能量部分地转化为按输入信号规律变化且有较大能量的输出信号。放大电路的实质,是一种用较小的能量去控制较大能量转换的能量转换装置。
第六章 基本放大电路 第一节 基本交流放大电路的组成 第二节 放大电路的图解法 第三节 静态工作点的稳定 第四节 微变等效电路法
第二章 基本放大电路 2.1 基本放大电路的组成 放大电路的组成原则 (1) 晶体管必须工作在放大区。发射结正偏,集 电结反偏。
工作原理 静态工作点 RB +UCC RC C1 C2 T IC0 由于电源的存在,IB0 IC IB ui=0时 IE=IB+IC.
(1)放大区 (2)饱和区 (3)截止区 晶体管的输出特性曲线分为三个工作区: 发射结处于正向偏置;集电结处于反向偏置
——2016年5月语音答疑—— 模拟电子技术基础 ——多级放大电路 时 间: :00 — 20:30.
第五章 集成运算放大电路 5.1 集成放大电路的特点 5.2 集成运放的主要技术指标 5.3 集成运放的基本组成部分
电 子 第四节 负反馈放大电路的计算 一、深度负反馈条件下放大倍数 的近似计算 二、方块分析法.
第17章 电子电路的反馈 17.1 反馈的基本概念 17.2 放大电路的负反馈 17.3 振荡电路的正反馈.
宁波兴港职业高级中学 题目:放大器的静态分析 电工电子课件 主讲:王铖 电工组 《电子技术基础》
2.4 工作点稳定的放大电路 2.5 阻容耦合多级放大电路及其频率特性 2.6 射极输出器
第十四章 放大电路中的负反馈.
iC iB ib iB uBE uCE uBE uce t uce t 交流负载线,斜率为-1/(RC //RL)
第6章 功率放大电路 6.1 功率放大电路的特殊问题 输出功率为主要技术指标。 晶体管起能量转换作用:
电工电子技术基础 主编 李中发 制作 李中发 2003年7月.
稳压二极管 U I + - UZ IZ IZ UZ IZmax
第八章 反馈放大电路 2018年5月14日.
第12章 基本放大电路.
放大电路中的负反馈 主讲教师:李国国 北京交通大学电气工程学院 电工电子基地.
第二章 双极型晶体三极管(BJT).
第16章 集成运算放大器 16.1 集成运算放大器的简单介绍 16.2 运算放大器在信号运算方面的应用
第6章 第6章 直流稳压电源 概述 6.1 单相桥式整流电路 6.2 滤波电路 6.3 串联型稳压电路 上页 下页 返回.
第7章 集成运算放大电路 7.1 概述 7.4 集成运算放大器.
10.2 串联反馈式稳压电路 稳压电源质量指标 串联反馈式稳压电路工作原理 三端集成稳压器
电压放大回路 功率放大级 对功放电路的要求: 输出功率PO 尽可能大 效率η要高 非线性失真尽可能小 分析电路采用:图解分析法 上页 下页
晶体管及其小信号放大 -单管共射电路的频率特性.
晶体管及其小信号放大 -单管共射电路的频率特性.
第5章 直流稳压电源 概述 直流稳压电源的组成和功能 5.1 整流电路 5.2 滤波电路 5.3 硅稳压管稳压电路
第5章 正弦波振荡电路 5.1 正弦波振荡电路的基本原理 5.2 RC正弦波振荡电路 *5.4 石英晶体正弦波振荡电路
实验二 射极跟随器 图2-2 射极跟随器实验电路.
第二章 基本放大器 2.1 放大电路的基本概念及性能指标 2.2 共发射极基本放大电路 2.3 放大器工作点的稳定
第四章 功率电子电路 4.1 概 述 4.2 乙类互补对称功率放大电路 4.3 甲乙类互补对称功率放大电路 *4.4 集成功率放大器
PowerPoint 电子科技大学 半导体器件的图测方法.
第 8 章 直流稳压电源 8.1 概述 8.2 稳压管稳压电路 8.3 具有放大环节的串联型稳压电路 8.4 稳压电路的质量指标.
第3章 集成运算放大器及其应用 3.1 集成运算放大器简介 3.2 差动放大器 3.3 理想运算放大器及其分析依据
电子技术基础.
实验一 单级放大电路 一、 实验内容 1. 熟悉电子元件及实验箱 2. 掌握放大器静态工作点模拟电路调试方法及对放大器性能的影响
差分放大器传输特性及其应用 您清楚吗? .
现代电子技术实验 集成运算放大器的放大特性.
信号发生电路 -非正弦波发生电路.
课程名称:模拟电子技术 讲授内容:放大电路静态工作点的稳定 授课对象:信息类专业本科二年级 示范教师:史雪飞 所在单位:信息工程学院.
9.3 静态工作点的稳定 放大电路不仅要有合适的静态工作点,而且要保持静态工作点的稳定。由于某种原因,例如温度的变化,将使集电极电流的静态值 IC 发生变化,从而影响静态工作点的稳定。 上一节所讨论的基本放大电路偏置电流 +UCC RC C1 C2 T RL RE + CE RB1 RB2 RS ui.
第四章 集成运算放大电路 4.1 集成放大电路的特点 4.2 集成运放的基本组成部分 4.3 集成运放的典型电路
课程小制作 ——三极管分压式共射极放大电路
第18章 正弦波振荡电路 18.1 自激振荡 18.2 RC振荡电路 18.3 LC振荡电路.
9.6.2 互补对称放大电路 1. 无输出变压器(OTL)的互补对称放大电路 +UCC
99 教育部專案補助計畫案明細 大類 分項 教育部補助 學校配合款 工作項目 計畫主 持人 執行期限 文號 備註 設備費 業務費 管理學院
模拟电子技术基础 多媒体课件 主编:马永兵.
Presentation transcript:

9.5 差分放大电路 差分放大电路用两个晶体管组成,电路结构对称,在理想情况下,两管的特性及对应电阻元件的参数值都相同,因此,两管的静态工作点也必然相同。 T1 T2 RC RB +UCC + ui1  iB iC ui2 RP RE EE iE + uO  9.5.1 静态分析 在静态时,ui1= ui2 = 0, 则 IC1= IC2 , VC1 = VC2 , 故输出电压 uO = VC1  VC2 = 0 差分放大电路的优点是具有抑制零点漂移的能力。

什么是零点漂移?   一个理想的放大电路,当输入信号为零时,其输出电压应保持不变(不一定是零)。但实际上,主要由于环境温度的变化,输出电压并不保持恒定,而在缓慢地、无规则地变化着,这种现象称为零点漂移(或称零漂),它影响放大电路的工作。 对差分放大电路,由于电路的对称性,当温度变化时,两边的变化量相等,即 IC1 = IC2 , VC1 = VC2 虽然每个管子都产生了零点漂移,但是,由于两集电极电位的变化是互相抵消的,所以输出电压依然为零,即 uO = VC1 + VC1  (VC2 + VC2 ) = VC1  VC2 = 0 零点漂移完全被抑制了。 电位器 RP 起调零作用,因为电路不可能完全对称,静态时输出电压不一定等于零,可通过调节 RP 使静态输出电压为零。

在静态时,设 IB1 = IB2 = IB, IC1= IC2 = IC,忽略阻值很小的 RP 可列出 上式中前两项较第三项小得多,可略去,则每管的集电极电流 T1 T2 RC RB +UCC + ui1  iB iC ui2 RP RE EE iE + uO  VE  0 接入 RE 是为了稳定和获得合适的静态工作点,负电源 EE 用来抵偿 RE 上的直流压降。