Download presentation
Presentation is loading. Please wait.
1
电子器件与组件结构设计 王华涛 哈尔滨工业大学(威海) 材料科学与工程学院 办公室:A 楼208 Tel:5297952
留下板书 2012年春
2
第二章 热控制 2.2 热控制基础 2.2.1 传导 2.2.2 对流 2.2.3 辐射 5.45
3
2.3 辐射传热 冬天,守在炉子旁为什么能取暖? 晒太阳为什么能暖和? 光谱?
4
2.3 辐射传热 可见光 FIGURE Spectrum 光谱of electromagnetic 电磁的radiation 辐射. 紫光 红外 微波 紫外光 热辐射 γ 射线 X射线 热辐射 μm,包括一部分紫外、全部可见光和红外辐射(不同书籍对该范围的定义有所不同,有 μm),对热辐射起决定作用的是红外光线。 它是由物质的热状态或温度产生的,并能对他们产生影响 “Fundamentals of Heat and Mass Transfer”,7th Edition
5
2.3 辐射传热>光谱 是否能穿透大气? 原生动物 单细胞
6
2.3 辐射传热 热辐射的定义 热辐射的本质和特点 由于自身温度或热运动的原因而激发产生的电磁波传播称为热辐射。
(1)辐射换热与导热、对流换热不同,它不依靠物质的接触而进行热量传递。 (2)辐射换热过程伴随着能量形式的两次转化,即物体的部分内能转化为电磁波能发射出去,当此电磁波能射到另一物体表面而被吸收时,电磁波能有转化成内能。 (3)一切高温物体只要温度高于绝对零度,都会不断发射热射线,当物体有温差时,高温物体辐射给低温物体的能量多于低温物体辐射给高温物体的能量。 红外成像技术
7
2.3 辐射传热 辐射强度? 热辐射的方向性 热辐射的光谱性质 辐射的强度是随波长变化的 光谱
波长的辐射强弱随发射表面的性质和温度的变化而变化 热辐射的方向性 一个表面不同方向上的辐射强度有差别 光谱分布 方向分布 单色辐射的发射率 FIGURE Radiation emitted by a surface. (a) Spectral distribution. (b) Directional distribution. 波长 “Fundamentals of Heat and Mass Transfer”,7th Edition
8
2.2.2 辐射传热 黑体 1. 黑体能够吸收任何波长和任何方向的全部投射辐射
2. 对给定的温度和波长,不存在能比黑体发射更多能量的表面(黑体辐射能量最多) 3. 虽然黑体所发射的辐射是波长和温度的函数,但它与方向无关,也即黑体是漫发射。 吸收和发射两个角度来理解 黑体是理想的吸收体和发射体,现实中不存在,用做真实表面辐射性质的参照体。
9
2.3 辐射传热 全辐射力E(辐射本领):在单位时间内、从单位表面积上以波长0~∞的全波段向半球空间辐射的总能量,单位:W/m2
黑体的全辐射能力Eb(斯蒂芬—波尔兹曼定律),可表示为: Tb——黑体的绝对温度,K σ0——黑体辐射常数,5.68x10-8W/(m2·K4) Cb——黑体辐射系数,5.68W/(m2·K4) 灰体的辐射能力E,可表示为 T——灰体的绝对温度,K; C——灰体辐射系数,W/(㎡,K4); ε——灰体的黑度。 ▲物体表面向外辐射的热量,由物体的表面温度和辐射能力决定 ▲表面温度越高,辐射的热量越多,辐射能力越强。 ▲辐射系数C表示物体表面的辐射能力,一般,粗造的表面辐射力大,光滑的表面辐射力小。
10
2.3 辐射传热 实际表面的发射 发射率 表面所发射的辐射与同温度的黑体所发射的辐射之比
实际表面,不同方向上的,或不同波长的发射率有所不同。 FIGURE Comparison 比较 of blackbody 黑体 and real surface emission 发射. (a) Spectral distribution. (b) Directional distribution. “Fundamentals of Heat and Mass Transfer”,7th Edition
11
2.3 辐射传热 FIGURE Spectral dependence 依赖关系 of the spectral 光谱的, normal 法向的 emissivity 发射率 of selected materials. 一些材料的法向发射率与光谱的关系 SiC 氧化铝 严重氧化的不锈钢 钨 W 抛光的不锈钢 “Fundamentals of Heat and Mass Transfer”,7th Edition
12
2.3 辐射传热 FIGURE Temperature dependence of the total, normal emissivity of selected materials. 一些材料的全波长法向发射率与光谱的关系 SiC 氧化铝 抛光的不锈钢 钨 W “Fundamentals of Heat and Mass Transfer”,7th Edition
13
FIGURE 12.19 Representative values of the total, normal
1. 金属表面的发射率一般很小,高度抛光的金和银,其值小于 氧化层会大幅度的提高金属表面的发射率,900K不锈钢,光洁0.3,严重氧化 非导体发射率比较大,通常大于 导体的发射率随温度增加而增大 发射率与表面性质密切相关,加工方法、热循环和环境变化会影响表面性质。 高度抛光的金属、箔、膜 刚得到的金属 FIGURE Representative values of the total, normal Emissivity. 一些有代表性的全波长法向发射率。 氧化的金属 碳、石墨 矿物、玻璃 植物、水、皮肤 特殊涂料、经历阳极氧化处理的表面 “Fundamentals of Heat and Mass Transfer”,7th Edition
14
若干辐射透不过材料的光谱法向吸收率和反射率
蒸镀铝膜 白漆 无光泽的 皮肤 白种人(高加索人) 铝材上的熔融石英 “Fundamentals of Heat and Mass Transfer”,7th Edition
15
若干半透明材料的光谱透过率与波长的关系 熔融石英 聚氟乙烯 低铁玻璃 高铁玻璃 透明 合成树脂
“Fundamentals of Heat and Mass Transfer”,7th Edition
16
'mə:kjuri 水星
17
玻璃陶瓷
18
2.3 辐射传热 物体的辐射特性 按其辐射特性分为黑体、灰体和选择性辐射体(非灰体)三大类
(1)黑体:能发射全波段的热辐射,在相同的温度条件下,辐射能力最大。(也能吸收全波段的热辐射。) (2)灰体:如果—个物体在每一波长下的单色辐射力与同温度、同波长下黑体的单色辐射力的比值为一常数,这个物体称为灰体。 灰体的辐射本领Eλ与同温度下黑体的辐射本领Eλ,b的比值称为黑度(发射率)ε。 (3)选择性辐射体 (非灰体):此类物体的单色辐射力与黑体、灰体截然不同,有的只能发射某些波长的辐射线。
19
2.3 辐射传热 A+R+D=1 热射线 辐射能的吸收、反射和透过 Q=QA +QR +QD
与可见光线一样,服从反射和折射定律,能在均一介质中作直线传播 能穿透真空和绝大多数气体,但不能透过工业上常见的大多数液体和固体。 辐射能的吸收、反射和透过 吸收率 A=1,黑体,全部吸收辐射能 相同温度下黑体向外辐射的能量最大 反射率 R=1,镜体,全部反射辐射能,包括镜面反射和漫反射 透过率 D=1,透明体,全部透过辐射能 QA 吸收 Q QR 反射 QD 透过 Q=QA +QR +QD A+R+D=1
20
2.3 辐射传热 颜色何来? ▲我们对颜色的感觉由表面的吸收和发射决定,发光体除外。 ▲物体对可见光进行选择性的吸收和反射
▲例,红衬衫,吸收了投射光的蓝、绿、黄部分,反射光中这些部分减弱,呈现红色。 但对颜色的解释要非常谨慎 判断:高温物体发红,是因为我们看到了红外线IR? X ▲对给定的投射辐射,表面的颜色不能说明这个表面作为吸收器或反应器的总能力 ▲因为投射辐射的大部分可能是在红外区,而非可见光区 ▲雪很白,对可见光有很高的反射能力,但能强烈的吸收红外线。
21
2.3 辐射传热>两平行面间的辐射传热 两平行面间的辐射传热 对于A1=A2的大平板 对于A1<<A2
F12称为物体1对物体2的角系数,反映物体2可截获物体1辐射能量的分数 两平行面间的辐射传热 对于A1=A2的大平板 对于A1<<A2 两平行有限表面 q12 ——净的辐射传热速率,W A1 A2——高温、低温物体的辐射面积,m2; T1 T2 ——高温和低温物体表面的绝对温度,K; F12 ——角系数,面12之间的辐射形状系数 ε1 ε2 ——高温、低温物体的黑度(发射率) σ ——黑体辐射常数,5.68x10-8 W/(m2·K4) 也称斯忒藩-玻尔兹曼常数
22
二维几何性质的角系数 中心线与两板垂直的平行板 带公共边的等长倾斜板
23
二维几何性质的角系数(续表) 带公共边的互相垂直的板 三个面构成的腔体 不同半径的平行圆柱体
24
一些由两个漫射灰表面组成的特殊腔体 如果r1=r2 即 两平行有限表面 封闭 diffuse reflection 漫反射
direct reflection mirror reflection 镜面反射
25
2.3 辐射传热 考虑辐射散热的条件 如果热表面周围被冷表面包围,如墙壁、天花板、天空,则考虑辐射散热
如果热表面周围被同温度的物体包围,其辐射也可忽略 抛光金属表面的辐射散热可忽略,因为其表面的发射率很低。 在分析PCB板的散热时,通过不考虑辐射,因为电子组件周围常常布满很多发热的其他组件,属于同温度间表面的辐射散热,可忽略。 把大功率PCB安置在离机箱壁近的位置,可利用辐射散热
26
2.3 辐射传热 辐射的散热量 对于普通电子器件,其辐射与自然对流的散热量相当,特别是那些塑料表面和油漆表面(不考虑颜色),其表面发射率均一。 辐射散热能力提升主要通过提高散热器表面发射率来实现,常用方法是表面做涂漆、喷沙提高粗糙度、阳极氧化等措施。 辐射对散热在自然散热条件下有一定影响,强迫空冷基本没有效果,并且一般散热器发射率的差异不大,在产品中一般不作重点考虑
27
2.3 辐射
29
注:q= 以后不再说明
32
太空航天器大都带有红外、 X射线、gamma射线探测器 等电子器件,他们在低温下 才能有效的减小放大器的噪声 以及宇宙的背景辐射,保证 稳定、可靠的探测性能。 宇宙是一个接近0K的黑体, 是一个极低温的热沉。 如果在航天器外壳放一块具有较高自身辐射的金属板,就能起到辐射制冷的效果
33
Passive Radiative Cooler for Use in Outer Space 外太空用被动辐射致冷器
This Passive Radiative Cooler shields a sample from infrared radiation incident from large off-axis angles while allowing infrared radiation to escape to space at angles closer to the axis. 被动辐射制冷器可以保护物体免受与轴偏离很大角度的红外辐射,并且以与轴接近的角度,通过红外辐射的形式将热散失到太空。 Passive Radiative Cooler for Use in Outer Space High-temperature superconductors are cooled radiatively to operating temperatures. Lyndon B. Johnson Space Center, Houston, Texas The figure depicts a passive radiative cooler designed for use in outer space. The design of this device conjoins radiative and conductive thermal-isolation features, which, in further conjunction with a favorable spacecraft attitude and on-orbit thermal environment, can be utilized to cool specimens of high-temperature superconducting materials to operating temperatures. Once installed on a spacecraft or even on the lunar surface, the passive radiative cooler will perform the cooling function that would otherwise be performed by a more expendables-hungry cryogenic system. This device, which has the added advantage of no moving parts, can operate in low orbit around the Earth in the space-shuttle cargo bay. Small and adaptable to many spacecraft and mounting configurations, this device can be used to demonstrate applications that involve superconductivity. Commercially, this device can advance the art by providing a simplified alternative for satellites equipped with infrared (IR) detectors or apparatuses that exploit superconductivity. The current art in cooling sensors or specimens of superconducting or other materials in outer space involves the use of cryogenic cooling systems; the operation of such systems is more complex and certainly more costly in expendables (cryogenic fluids) than is the use of the passive radiative cooling capability of outer space itself. Though radiative coolers other than the present one have been used before in outer space, those devices can operate only on interplanetary spacecraft, on spacecraft in high orbit around the Earth, or on spacecraft in low orbit around the Earth under tailored illumination conditions (i.e., Sun-synchronous orbits). The thermal-radiation environment of a high orbit around the Earth differs markedly from that of a low orbit around the Earth: the proximity of the Earth gives rise to undesirable heating by IR radiation from the Earth plus reflected solar radiation reflected from the Earth (albedo) from a large portion of the field of view. The present passive radiative cooler provides shielding against the radiation from the Sun and Earth and is of a size and simplicity that make it suitable for operation in the space-shuttle cargo bay, which is also a source of IR heating. The three main components of the passive radiative cooler are a mounting base, a conical shade, and a conical radiator/sample tray. The mounting base includes a low-thermal-conductance structure for holding the conical shade. The conical radiator is suspended within the conical shade by tensioned nonmetallic cords, which provide (1) a high degree of isolation against thermal conduction and (2) protection against vibration for the sample tray and the radiator. Both the outside of the conical radiator and the inside of the conical shade are fabricated with a low-IR-emittance finish for a high degree of radiative isolation. The inside of the conical radiator is given a high-IR-emittance finish to promote high radiative transfer of heat to space. An item that one seeks to cool (e.g., a specimen of a high-temperature superconductor) is affixed to the sample tray, and the passive radiative cooler is mounted on a spacecraft structure that faces away from the Sun or a planet. As the spacecraft orbits in a specified attitude, the sample tray and sample are cooled radiatively. The cone angle of the radiator is chosen to afford adequate radiative heat rejection while enabling the cone to shield the sample from viewing other bodies (the Earth, the Sun, or nearby objects) that could adversely affect heat balance of the sample. A relatively high degree of thermal isolation can be achieved. For example, in a test of a prototype of the passive radiative cooler, a sample temperature of 116 K was achieved in the presence of a mounting surface at a temperature of 240 K. The passive radiative cooler is expected to function within a remarkable temperature range. The basic passive-radiative-cooler design is flexible and scalable; for example, if the device is to be mounted in a location with few nearby obstructions, it could be beneficial to design for a more open cone. The passive radiative cooler can be mounted on a spacecraft for cooling samples of high-temperature superconductors or other materials, detectors, or sensors, provided the environment and spacecraft attitude meet the specified criteria. Finally, again assuming that sufficient isolation from the surface can be achieved, the passive radiative cooler can even be used on the lunar surface to cool sensors. This Passive Radiative Cooler shields a sample from infrared radiation incident from large off-axis angles while allowing infrared radiation to escape to space at angles closer to the axis. This work was done by Steven L. Rickman, Ross G. Iacomini, David S. McCann, Robert G. Brown, and Yuan-Chyau Chang of Johnson Space Centerand by Jeffrey A. Clayhold, Ching-Wu (Paul) Chu, Allen W. Linnen, Jr., and Yuyi Xue of the Texas Center for Superconductivity, University of Houston. MSC-22712 The figure depicts a passive radiative cooler designed for use in outer space.
34
工作原理 The principles of operation are quite simple although difficult to realise in practice. (辐射制冷的)工作原理简单,但难以实现。 A high emissivity radiator, or ‘cold patch’, is directed towards open space, and heat is lost through radiation to a perfectly black (ε = 1) heat sink at 4 K (no views to warm celestial bodies). 高发射率的辐射体或称为冷垫,直接面向太空。太空可以视作一完美的黑色热沉,其温度为4K(不考虑温暖的天体)。这样,热以辐射的形式散失。 Heat is then conducted out of the focal plane array (FPA) assembly via a low thermal resistance (conductive) path or ‘cold finger’ attached to the radiator.组装的焦平面阵列(FPA)的热量,通过低热阻(传导)路径或者连接到辐射体的冷头,传导出去。
35
Photographs of the CIRS Engineering Model passive radiative cooler
Composite Infrared Spectrometer (CIRS) 光谱仪 The key features of the CIRS passive cooler are its low mass (less than 2.5 kg) and its very compact design (it does not use reflective radiation shields). Being a passive cooler it exports no vibration during operation and provides sufficient cooling power to cool the two 1 × 10 arrays of HgCdTe detectors to below 80 K. Image of the CASSINI spacecraft showing the position of the CIRS instrument
36
注 本资料仅作教学之用 部分资料来自internet 如果传播,请注明 哈尔滨工业大学(威海)王华涛
Similar presentations