Presentation is loading. Please wait.

Presentation is loading. Please wait.

工程地質原理與實務 單元一 工程地質的原理與方法 李錫堤教授 中央大學應用地質研究所.

Similar presentations


Presentation on theme: "工程地質原理與實務 單元一 工程地質的原理與方法 李錫堤教授 中央大學應用地質研究所."— Presentation transcript:

1 工程地質原理與實務 單元一 工程地質的原理與方法 李錫堤教授 中央大學應用地質研究所

2 何謂「工程地質學」? 1. 與地質學的關聯性如何? 2. 與大地工程學的區別在那裡?

3 工程地質學簡介 地質學基本上可分為物理地質學 (physical geology)、歷史地質學(historical geology)及 應用地質學(applied geology)三大部門。 應用地質學係地質學各個不同學科在資源、工程、 水及軍事問題上的應用(Jackson, 1997)。近年來, 由於資源短缺、土地利用及極端氣候衝擊等議題 浮上檯面,地質災害及水質污染等問題逐漸受到 重視,環境問題亦成為應用上的另一項重點。

4 工程地質學簡介 工程地質學是地質資料、技術及原理在研究自然 界岩石、土壤及地下水之應用,以確保影響工程 結構物及地下水資源開發之位置、規劃、設計、 運轉與維護之各項地質因素被適當的認知及充份 地解釋,使成可利用之資料,及提供工程實務上 之使用。(AEG, 1969; Jackson, 1997) 工程地質學是研究與工程有關的地質問題的科學。 工程地質學是研究人類工程活動與地質環境相互作用的科學。

5 工程地質的定義 It is the application of geologic data, techniques, and principles to the study of naturally occurring rock and soil materials or ground-water for the purpose of assuring that geologic factors affecting the location, planning, design, construction, operation and maintenance of engineering structures, and the development of groundwater resources, are properly recognized and adequately interpreted, utilized, and presented for use in engineering practice. (AEG, 1969) Geology as applied to engineering practice, especially mining and civil engineering. As defined by the Council of Professional Geological Organizations, Suggested Geologist Practice Act of 1993, engineering geology is a specialty of geology relevant to (1) the planning, design, operation and maintenance of civil engineer-ing works; (2) the development, protection and remediation of ground- and surface-water resources; and (3) other human activities where geologic factors and conditions impact the public welfare and the safeguarding of life, health, property, and environment. (Jackson, 1997)

6 工程地質學簡介 土木工程,在於彫塑地球以適合人類的生活。開運河、 挖隧道,是一種彫刻工作;築長城、建大壩,是一種 塑造工作。彫塑地球,必然與地質學發生關係。但地 質學的範圍極廣,並非全部與土木工程有關。與土木 工程有關的地質學知識,稱為工程地質學(Engineering Geology)。與地質有直接而密切關係的土木工程,稱 為地質工程(Geological Engineering),例如隧道工程、 採石工程、岩坡工程、壩基工程等。(洪如江,1994) 吾人為改善生活環境所做的土木、水利、建築及採礦 工程建設都不外即開挖土石及利用砂石、鋼筋及水泥 等自然材料建造結構物。如何有計畫及有效率地雕塑 地表與淺部地殼,以符合人類的居住及活動,自然須 要地質學及各相關學科的有效應用。

7 工程地質學簡介 先要了解工址的地質組成,包括:土壤、岩石及水的特性 描述。我們可利用即有的地質資料及進一步的調查與試驗 資料,加以分析,做成各種類別的地質材料特性描述。 接著須測繪及分析工址的地質構造,了解工址各類地質材 料的空間位置、幾何形狀及構造特性,並歸納成分類化的 土體(soil mass)及岩體(rock mass)暨其定量化的特性描述。 更重要的是要了解土體及岩體受自然環境(地質應力、地 下水及風化等因素)的影響及其特性隨時間的變化。也就 是,除了靜態的地質組成與地質構造外,我們要了解工址 的「地質狀況」。 最後,我們還要了解工程建設也會影響「地質狀況」,例 如:開挖、荷重及排水等都會改變土體及岩體的內部應力 與水壓力,因而改變了「地質狀況」。因此,了解地質狀 況與工程因素之間的相互影響及其情況變化,更是「工程 地質」的重要課題。

8 工程地質學的四大要素 1. 地質材料: 岩石、土壤及水。 地質觀點:成因、產狀、礦物組成、 組構等。 工程觀點:強度、變形性、透水性、韌度、 密度、硬度、耐久性等。 2. 地質構造: 岩體(rock mass)及土體(soil mass)之幾何形狀,層面、節理、 斷層及褶皺等。 地質觀點:類別、位態等。 工程觀 點:位態、密集程度、含泥情況、含水情況等岩體特 徵,以供推求其強度、變形性及透水性等工程參數。

9 工程地質的四大要素 3. 環境因素: 地形、大地構造及大地應力、河谷解壓、地溫、地下 流及地下水壓、氣候、風力、波浪、河蝕等。
4. 工程因素: 開挖、填方、抽水、排水、擋土、噴漿、地錨、灌漿、 機械處理等。

10 工程地質學的理論架構 工程地質學理論須建構在地質學的原理與方法上。首 先須接受一般的地質學原理與學說,包括:古今一致 論(uniformitarianism)、地殼均衡說(isostasy)、板塊構 造學說(plate tectonic theory)及地質學各分科的基本原 理,例如:地層學中的原始水平原則 ( principle of original horizontality) 及疊積定律(law of superposition) 等。 工程地質學亦有其本身的基本原理,包括:

11 工程地質學原理 地質材料 + 地質構造 = 岩體或土體 岩體或土體 + 環境因素 = 地質狀況 地質狀況 + 工程因素 = 工程地質
靜態的地質材料/構造暨岩體/土體必須有環境因素的 考量,例如考量風化及侵蝕作用的影響等,吾人才能 瞭解工址的地質狀況。 瞭解了地質狀況後,必須再進一步瞭解工程因素,例 如開挖或填土的影響,這才是工程地質(洪如江, 1988)。 理論的精鍊是學術發展的基礎,也是工程地質學未來 發展的一項重點。

12 工程地質與相關學科

13 工程地質的方法學 在理論基礎之下,方法學才能據以發展。工程地質的 方法學可包括:調查方法、分析方法及評估方法三個 部分。
主要的調查方法包括:遙感與航照判釋、各種地質調 查測繪、各種地下地質探測、地球物理方法、地球化 學方法及各種室內與現地試驗。調查方法的改進及新 調查方法的開發是進一步發展的重要課題。 主要的分析方法包括:地形分析、平面及剖面分析、 空間資料分析、地質構造元素的分類(土體、岩體、水 體及斷層帶等)與均勻性分析、地質統計學及地理資訊 系統的應用等。分析方法的改進及新分析方法的開發 也是進一步發展的重要課題。

14 工程地質的方法學 評估方法是過去較少被討論的部分。在中央大學應用 地質研究所的課程中曾討論過下列評估法:
(1)經驗規則(method of thumb), (2)相似規則(method of analogue), (3)區域位態規則(rule of regional attitude), (4)構造階層規則(rule of structural level), (5)地質地形相容規則(compatibility between geology and topography), 及 (6)地質資料相容規則(compatibility among geological data)。

15 工程地質實務 在實務方面,工程地質行業中首重工作規範及技術手 冊的建立。
在工程地質實務界,各種調查試驗及分析工作都有工 作規範或技術手冊可以依循。但是,這一些工作規範 或技術手冊是否都很完善?不同公司及機構間是否有 統一的規定?甚至是否每一個單位都有齊全的文件? 這都還有待努力。 工程地質是高度依賴經驗累積的行業;這種經驗可以 累積在個人身上,但更應該是要建立行業內的經驗規 則,使初學者都耳孰能詳,不易犯錯。 經驗規則亦可衍伸為經驗公式的建立與應用。好用的 經驗規則與經驗公式都值得進一步推廣。

16 工程地質學之應用範圍 1. 水庫及大壩工程, 2. 隧道及地下結構工程, 3. 基礎及邊坡工程, 4. 鐵路及公路工程,
5. 區域規劃及社區開發, 6. 港灣建設及海岸工程, 7. 地下水資源開發, 8. 採礦工程, 9. 核能電廠工程及核能廢料處理, 10. 二氧化碳地質封存, 11. 深層地熱開發,及 12. 各種開發建設之地質災害評估等。

17 當前工程地質學重要的課題 1. 工程地形學 2. 岩體分類與均勻區劃分 3. 自然災害調查與評估技術 4. 海岸及海床工程地質與評估技術
(1/2) 1. 工程地形學 2. 岩體分類與均勻區劃分 3. 自然災害調查與評估技術 4. 海岸及海床工程地質與評估技術 5. 長隧道及地下洞穴的工程地質問題 6. 二氧化碳封存的工程地質問題 7. 核廢料地質處置的工程地質問題 8. 深層地熱開發的工程地質問題 9. 氣候變遷與工程地質 10. 集水區泥砂及水庫淤積問題, 11. 新調查技術開發與引進,

18 當前工程地質學重要的課題 12. 在地化岩體分類系統, 13. 軟岩及礫石層隧道工程, 14. 活斷層及地震評估,
(2/2) 12. 在地化岩體分類系統, 13. 軟岩及礫石層隧道工程, 14. 活斷層及地震評估, 15. 山崩及泥石流研究, 16. 都市地質, 17. GIS的應用, 18. 地質統計學的應用, 19. 工程地質研判規則及專家系統的建立, 20. 資料庫及案例庫的建立, 21. 調查規範與職業倫理的建立, 22. 工程地質教育等。

19 IAEG 2014 Sessions 1 - CLIMATE CHANGE AND ENGINEERING GEOLOGY
1.1 - Climate Change and the Mountain Environment 1.2 - Climate Change and Water Resources 1.4 - Climate Change: Impacts on Natural Resources and Hazards 1.7 - Downscaling Climate Information for Impact Studies 1.9 - Environmental and Engineering Geological Problems in Permafrost Regions in the Context of a Warming Climate Exploration, Exploitation and Monitoring Geothermal Energy Fields: the Role of Geophysics Impact of Climatological Changes on the Hydro Geomorphological Process in the Coast Areas Instabilities of Alpine Permafrost Landslides, Climate and Global Change Role of Geosciences in Climate Change and Energy Security Slope Dynamics and Its Control in a Climate Change Scenario

20 IAEG 2014 Sessions 2 - LANDSLIDE PROCESSES (1/3)
2.1 - Advanced Landslide Field Instrumentation and Monitoring 2.2 - Approaches to Landslide Risk Modelling and Mitigation 2.3 - Characterization, Monitoring and Modelling of Large Slope Instabilities and Their Interaction with Engineering Structures 2.4 - Characterizing and Monitoring Landslide and Ground Deformation Processes Using Remote Sensing and Geophysics 2.6 - Debris Flows: Mechanics, Modeling, Mitigation Measures, Hazard and Risk Assessment and Management 2.7 - Deep-Seated Gravitational Slope Deformations: Innovative Multidimensional Approaches and Targeted Applications 2.8 - Early Warning Systems for Landslide Hazard and Risk Management 2.9 - Earthquake-Induced Landslides Failure Mechanisms of Large Rock Slopes Geotechnical Design and Assessment of New and Existing River Embankments

21 IAEG 2014 Sessions 2 - LANDSLIDE PROCESSES (2/3)
Giant Landslides - Major Hazard from Rare Events Hazard Mapping Interpretation of Landslide Mechanisms for Risk Mitigation Landslide Dam: Formation and Stability Landslide Forecast Using New Techniques and Early Warning Systems Landslide Numerical Modeling Landslide Recognition, Early Warnings and Risk Management Long-Term Monitoring of Deep-Seated Gravitational Slope Deformations for Hazard Assessment and Mitigation Mathematical-Numerical Modelling Approaches for Slope Stability Analyses Mechanisms of Initiation of Rapid Landslides Monitoring and Early Warning Monitoring and Modeling of Landslide Processes

22 IAEG 2014 Sessions 2 - LANDSLIDE PROCESSES (3/3)
Numerical and Analytical Methods for Prediction of Landslide Deformation Evolution Passive Seismic Methods for Unstable Masses Monitoring Prediction Methods for Rainfall Triggered Landslides Rapid Landslide Propagation: Physical and Numerical Modeling Rapid Mass Movement of Rock Risk Analysis, Assessment and Management Rockfall Protection Rockfall Risk Assessment and Management - Current Practice and Developments Slope Stabilization and Protection Measures: Concepts and Methods Water in Slope Instability: Hydrological, Mechanical and Chemical Processes

23 IAEG 2014 Sessions 3 - RIVER BASINS, RESERVOIR SEDIMENTATION AND WATER RESOURCES (1/2) 3.1 - Dams and Water Resources Management 3.2 - Dams, Sediment and Geomorphic Processes 3.3 - Debris-Flow Monitoring and Warning 3.4 - Dynamics of Large Wood in River Basins: Recruitment, Transport and Related Hazard 3.5 - Ephemeral Streams in Karst Area: Behaviour and Flood Risk 3.6 - Groundwater Modelling 3.8 - Integrated River Management Modeling of Alluvial Aquifer Systems Remediation of Polluted Acquifers and Subsoils River Basin Management and Floods: Theories and Good Practices in Engineering and Geology

24 IAEG 2014 Sessions 3 - RIVER BASINS, RESERVOIR SEDIMENTATION AND WATER RESOURCES (2/2) Sediment Dynamics and Trajectories of Channel Adjustments Sediment, Morphodynamics and Flood Risk Water Basins Management in Semi-Arid Regions Water Resource Assessment in Karst and Fractured Aquifers What Is Expected from the Emerging Monitoring Technologies for the Surface Hydrological Processes Analysis at Catchment Scale

25 IAEG 2014 Sessions 4 - MARINE AND COASTAL PROCESSES
4.1 - Coastal and Offshore Geo-disasters 4.3 - Coasts at Threat: Causes and Consequences of Coastal Settlements and Maritime Transportation 4.6 - Monitoring and Measurement of Seabed Dynamic Process 4.7 - Relative Land Subsidence in Transitional Coastal Environment: Causes, Effects, Quantification, Monitoring 4.8 - Submarine Mass Movements: Hazards and Risk Assessment

26 IAEG 2014 Sessions 5 - URBAN GEOLOGY, SUSTAINABLE PLANNING AND LANDSCAPE EXPLOITATION (1/2) 5.1 - Aggregates – The Most Widely Used Raw Material 5.2 - Analysis and Control of Ground Deformations By Remote Monitoring 5.3 - Building Stones & Ornamental Rocks - Resource Evaluation, Technical Assessment, Heritage Designation 5.4 - Communicating Engineering Geology with Urban Planners 5.5 - Complexity in Hazard and Risk Assessment 5.6 - Engineering Geology in Rural Infrastructure Planning 5.7 - Engineering Problems in Karst 5.8 - Excavation in Potentially Asbestos-Bearing Rocks: Methodologies for Risk Evaluation and Safety Management 5.9 - Experiences and Potentialities of Data-Driven Modeling in Earth Science Issues Geohazard in Urban Scenarios: Forecasting and Protective Monitoring Geo-Hydrological Risk and Town and Country Planning

27 IAEG 2014 Sessions 5 - URBAN GEOLOGY, SUSTAINABLE PLANNING AND LANDSCAPE EXPLOITATION (2/2) Landslide and Flood Hazard in Urban Areas: Assessment, Monitoring and Mitigation Strategies Mapping Urban Subsurface for Geohazard Assessment and Risk Management Off-Fault Coseismic Surface Effects and Their Impact in Urban Areas Remote Sensing Applications for the Detection, Monitoring, Modeling and Damage Assessment of Critical Structures and Complex Surface Fault-Rupture Hazard in Urban Areas The Seismic Microzonation: Input Data, Methodology and Impact On Planning Underground Urban Development Urban and Land Planning Versus Risks Resilient Management Contruction Materials Aquifer Vulnerability and Springs/Wells Protection Zones

28 IAEG 2014 Sessions 6 - APPLIED GEOLOGY FOR MAJOR ENGINEERING PROJECTS (1/2) 6.1 - Addressing Geological Uncertainties in Major Engineering Projects 6.2 - Applied and Active Tectonics 6.3 - Applied Geology for Infrastructure Projects 6.4 - Capturing and Communicating Geologic Variability and Uncertainty 6.6 - Construction in Complex Geological Settings - The Problematic of Predicting the Nature of the Ground 6.7 - Engineering Geological Problems in Deep Seated Tunnels 6.8 - Engineering Geological Problems Related to Geological Disposal of High-Level Nuclear Waste 6.9 - Engineering Geology and Design of Hydroelectric Power Plants Geological Model in Major Engineering Projects Impacts of Environmental Hazards to Critical Infrastructures

29 IAEG 2014 Sessions 6 - APPLIED GEOLOGY FOR MAJOR ENGINEERING PROJECTS (2/2) Innovative Methods in Characterization and Monitoring of Geotechnical Structures Large Projects Impact Assessment, Mitigation and Compensation Properties and Behaviour of Weak and Complex Rock Masses in Major Engineering Projects Radioactive Waste Disposal: An Engineering Geological and Rock Mechanical Approach Subsurface Water in Tunnels: Prediction, Estimation, Management Sustainable Water Management in Tunnels Uncertainty and Risk in Engineering Geology Physical Impacts to the Environment of Infrastructure Development Project - Engineering Geology Data for Environmental Menagement

30 IAEG 2014 Sessions 7 - EDUCATION, PROFESSIONAL ETHICS AND PUBLIC RECOGNITION OF ENGINEERING GEOLOGY 7.1 - Engineering Geological Models 7.2 - Fifty-Year-Long History of IAEG in Events and Personalities 7.3 - Geoethics and Natural Hazards: Communication, Education and the Science-Policy-Practice Interface 7.6 - Resilience 2 Citizens & Citizens 4 Resilience. from Collaborative Risk Management to Knowledge Sharing of Natural Hazards 7.7 - Standards, Guidelines and Best Practices for Engineering Geology

31 IAEG 2014 Sessions 8 - PRESERVATION OF CULTURAL HERITAGE
8.1 - Conservation of Heritage of Earthen Structure, Earth Mound, Dam, Rock Monument, and Rock Cavern 8.2 - Engineering Geology and Preservation of Cultural Heritage 8.3 - Engineering Geology Problem of Preservation and Restoration of the Cultural Heritage 8.4 - Engineering Geology Problems and Preservation of Chinese Caves and Earthen Architecture Site 8.5 – Geo-heritage, Geo-sites, Geo-parks: Contributions of the Engineering Geology in the Management of Natural and Cultural Landscape 8.7 - Monitoring and Modelling Applications for the Diagnosis of the Actual Conditions, Preservation and Management of Cultural Heritage 8.8 - Preservation of Cultural Heritage from Natural Hazards 8.9 - Protection of Cultural and Natural Heritage for Mass-Failure Risk Reduction The Role of Historical Archives in the Assessment, Management and Valorization of Cultural Landscapes Weathering and Preservation of Building Stones and Other Materials

32 Thanks for your attention!
謝謝

33 工程地質學與岩土工程學的分野在哪裡?請申論之。


Download ppt "工程地質原理與實務 單元一 工程地質的原理與方法 李錫堤教授 中央大學應用地質研究所."

Similar presentations


Ads by Google