Presentation is loading. Please wait.

Presentation is loading. Please wait.

資料來源:行政院原子能委員會核能研究所,2013/06

Similar presentations


Presentation on theme: "資料來源:行政院原子能委員會核能研究所,2013/06"— Presentation transcript:

1 資料來源:行政院原子能委員會核能研究所,2013/06
第三代核能反應爐 資料來源:行政院原子能委員會核能研究所,2013/06

2 第三代反應器 使用國家 與開發商 反應爐 發電量MWe 設計過程 主要特點 (共通點:更 精進的安全度)
主要特點 (共通點:更 精進的安全度) 美國、日本 (GE-Hitachi, Toshiba) ABWR 進步型沸水式反應爐 1300 年開始在日本商轉 美國:核管會在1997年認證 進化的設計 更好的效率,更少的廢料 簡化的建設(48個月)及運轉 美國 (西屋Westinghouse) AP-600 AP-1000 AP-600 NRC在1999年認證, AP-1000 NRC 2005年認證, 中國有許多已計劃的機組。 簡化的建設及運轉 3年興建期 60年電廠壽命 法國、德國 (Areva NP) EPR US-EPR 1600 法國未來的標準 法國設計認可 芬蘭及法國興建中,中國也有計畫興建,亦發展適合美國的機組。 燃料效率高 較彈性的運轉模式 美國 (GE- Hitachi) ESBWR 1550 由ABWR進一步發展,在美國認證中,可能在美國興建。 進化型的設計 更短的興建時程

3 預估在2050年前,歐洲會有上百部新核能機組被裝設,美洲也有超過百部新核能機組,亞洲將超過200部,非、澳亦將各超過50部。其裝設機型將選擇第三代(Gen-III)輕水式反應器,或第三代改良型(Gen-III+)輕、重水式反應器(即進步型反應器)等,包括有進步型沸水式反應器(ABWR);進步型壓水式反應器(AP-1000);歐洲壓水式反應器(EPR-1600);進步型重水式反應器(ACANDU);經濟簡單型沸水式反應器(ESBWR)。這些機型均可達到爐心融毀機率(CDF)小於10-6/反應器年之要求,Gen- III+又把被動式安全設計引入,使反應器更加安全。有些機型甚至不會發生爐心融毀,也不需要規劃廠外緊急計畫安全措施,低密度人口區也會縮小到廠區範圍內。這些機型都遵行模組化設計,對核能管制單位的安全審核工作減量很多,建廠工期也可縮短很多。所以,這些新型機組,不論在安全、經濟及環保上,均可使核管單位、核電廠本身及周圍居民均滿意,達到三方共贏的目的。 下一代核能系統通稱為第四代(Gen-IV)核反應器,國際間對第四代核電廠的發展成立組織,並選擇了六款反應器為代表:(1)氣冷式快中子反應器(GCFR);(2)鈉冷式快中子反應器(LMFBR(Na));(3)鉛冷式快中子反應器(LMFBR(Pb));(4)超臨界水反應器(SCWR;可快中子,可慢中子);(5)超高溫氣冷式反應器(VHTGR;慢中子);(6)熔鹽式反應器(MSR;慢中子)。其中有四種為快中子反應器,在其運轉之中,可將鈾-238轉化成鈽-239,延長鈾礦使用壽命數十倍。其中VHTGR是一種利用化學熱裂解水產氫之核子反應器,為將來氫能來源提供了一最佳的核反應器選擇。

4 其中GEN-III+為2030年前新增機組之主力,我國必須對於這些新式設計進行深入了解,以便能正確地選擇最適當的增建機組,並對於後續之設計、製/建造及運轉有所助益。GEN-IV(FBR)為快滋生反應器之研究計畫,最快須2030年以後,才可能有商業應用之設計;美國能源部與核管會已於2008年8月15日,檢送「新世代核電展示廠申照策略報告」給國會審查,目前以「超高溫氣冷式反應器」最被看好。 過去為了避免核子擴散,1976年卡特總統宣布美國放棄用過核子燃料再處理技術開發,用過核子燃料將直接處置。2006年美國提倡GNEP,將採用新核燃料循環和最少化放射性廢棄物的技術,使核能與環境友好;並改進核技術與核材料的控制能力,降低核子擴散風險。目前核燃料只使用一次即當廢棄物處置,只用到鈾能量理論值的1 %,無異暴殄天物;若改採用過核子燃料再處理之永續循環利用模式,可使鈾充分利用,並大量減少貯存用過核子燃料所需空間。

5 用過核子燃料管理技術,除部分涉及禁止核子擴散問題,我國不宜自行研發外,可透過加強國際合作方式,密切掌握國際間相關最新技術之發展現況。隨著科技研發及減碳能源引用,未來將走向氫經濟;故有人開始倡議以核能發電來產氫,並與燃料電池等技術結合,以擴大核能發電之應用。 國際熱融合實驗反應器(International Thermonuclear Experimental Reactor, ITER)計畫是由中國、歐盟、印度、俄羅斯、日本、南韓與美國等國共同出資,於法國南部Cadarache興建一座熱功率5百萬瓩的實驗型托克瑪克機(tokamak)。ITER計畫在評估開發核融合能源的可行性,它將成為世界第一個產出能量大於輸入能量的核融合裝置,和目前所知的所有能源相比,核融合產生的能源是最理想的,不僅燃料充足,又不產生溫室氣體及高放射性廢棄物,將可大幅地降低環境污染問題。如果採用核融合機制的核能發電能成功,將為人類提供取之不盡的能源。ITER計畫已於2008年開始動工興建,2011年開始組裝,預計於2016年開始營運。ITER計畫將持續30年,前10年用於建廠,後20年用於研發與營運[ITER, 2008]。

6 第三代反應器 使用國家 與開發商 反應爐 發電量MWe 設計過程 主要特點 (共通點:更精進的安全度)
主要特點 (共通點:更精進的安全度) 日本(國營企業utilities, Mitsubishi) APWR US-APWR EU-APWR 基本設計進展中,計劃建於敦賀,計劃於2008申請美國認證 混合的安全設施 簡化的興建與運轉 南韓 (韓國水力與核能發電有限公司KHNP, 由西屋技術轉移) APR-1400 1450 第一部機組預計於2013年運轉。 進化的設計 增強的可靠度 簡化的興建及運轉 德國(Areva NP) SWR-1000 (BWR) 1200 正在開發中,在美國取得預先認證pre-certification 創新的設計 燃料高效率 俄羅斯(Gidropress) VVER-1200 (PWR) 替換正在興建中的列寧格勒及Novovoronezh電廠。 進化型設計 50年電廠壽命 加拿大(加拿大原子能有限公司 AECL) CANDU-6 CANDU-9 增大的形式。1997年授權批准 彈性的燃料需求 CANDU-9:獨立單一的單位

7 第三代反應器 使用國家 與開發商 反應爐 發電量MWe 設計過程 主要特點 (共通點:更精 進的安全度)
主要特點 (共通點:更精 進的安全度) 加拿大(加拿大原子能有限公司 AECL) ACR進步型Candu反應爐 在加拿大進行認證。 進化型設計 輕水冷卻 低濃縮燃料 南非 (Eskom, Westinghouse) PBMR球床模組式反應爐 170 (module) 原型將開始建設中國相當於200MWe同樣的機組 模組化電廠,低成本 燃料效率高 直接循環汽輪機 美國-俄羅斯等地(General Atomics - OKBM) GT-MHR 氣渦輪機-模組化氦氣反應爐 285 (module) 跨國的合資集團正在俄羅斯研發中。 直接循環式汽輪機

8 AP-1000

9 ABWR

10 AP-1000

11 EPR

12 ESBWR

13 US-APWR

14 APR-1400

15 SWR-1000

16 VVER

17 CANDU-6

18 CANDU-6

19 ACR-1000

20 ACR-1000

21 PBMR

22 PBMR

23 GT-MHR

24 Advanced Reactors Reactor designers are developing a number of small light-water reactor (LWR) and non-LWR designs employing innovative solutions to technical nuclear power issues. These designs could be used for generating electricity in isolated areas or producing high-temperature process heat for industrial purposes. The U.S. Nuclear Regulatory Commission (NRC) expects to receive applications for staff review and approval of some of these designs as early as Fiscal Year 2011. The NRC has developed its current regulations on the basis of experience gained over the past 40 years from the design and operation of light-water reactor (LWR) facilities. Now, to facilitate the licensing of new reactor designs that differ from the current generation of large LWR facilities, the NRC staff seeks to resolve key safety and licensing issues and develop a regulatory infrastructure to support licensing review of these unique reactor designs. Toward that end, NRC policy encourages early discussion (prior to submission of a license application) between agency staff and potential applicants (such as utilities and reactor designers). Such discussions enable the NRC staff to offer licensing guidance and identify and resolve potential licensing issues early in the licensing process. During this pre-application period for design certification, the NRC holds public meetings with potential applicants to discuss advanced reactor designs and identify (1) major safety issues that could require Commission policy guidance to the staff, (2) major technical issues that the staff could resolve under existing NRC regulations and policy, and (3) research needed to resolve identified issues. See the following pages for specific information regarding ongoing pre-application reviews:

25 International Reactor Innovative and Secure (IRIS)
Design Applicant International Reactor Innovative and Secure (IRIS) Westinghouse Electric Company NuScale NuScale Power, Inc. Pebble Bed Modular Reactor (PBMR) PBMR (Pty.), Ltd. Super-Safe, Small and Simple (4S) Toshiba Corporation Hyperion Hyperion Power Generation, Inc. Power Reactor Innovative Small Module (PRISM) GE Hitachi Nuclear Energy mPower Babcock and Wilcox Company In addition to its ongoing activities regarding these specific reactor designs, the NRC staff is working with representatives of the U.S. Department of Energy (DOE) on the next generation nuclear systems known as "Generation IV reactors." The staff has identified several policy issues associated with licensing small LWR and non-LWR designs and has assembled a list of related Commission documents and policy statements. In addition, visit Advanced Reactor Research for a discussion of the nine key areas of anticipatory and confirmatory research, which the NRC's Office of Nuclear Regulatory Research is conducting in support of licensing reviews for advanced reactors.

26 International Reactor Innovative and Secure (IRIS)
Designer:  Westinghouse Electric Company Reactor Power:  1000 MWt Electrical Output:  335 MWe Outlet Conditions:  330°C Coolant:  Light water Fuel Design:  17 x 17 assemblies 4.95% enrichment UO2 Refueling:  3-3.5 years Letter of Intent:  Updated March 18, Licensing Plan:  Design Certification Expected Submittal:  Q Design Information:  Pressurized water reactor with reactor vessel, helical-coil steam generators, reactor coolant pumps, and pressurizer within a reactor vessel which is enclosed in a spherical steel containment vessel. Status/Other Info:    Website:  

27 NuScale Designer:  NuScale Power, Inc. Reactor Power:  150 MWt Outlet Conditions:  150 psig, 575°F Electrical Output:  40 MWe Coolant:  Light Water Fuel Design:  17 x 17 fuel bundles, 6', 4.95% enrichment Refueling:  24 months Licensing Plan:  Design Certification Design Information:  Natural circulation light water reactor with the reactor core and helical coil steam generators located in a common reactor vessel. The reactor vessel is submerged in a pool of water. Status/Other Info:  Based on MASLWR (Multi-Application Small Light Water Reactor) developed at Oregon State University in the early 2000s.

28 Pebble Bed Modular Reactor (PBMR)
Designer:  PBMR (Pty.), Ltd. Reactor Power:  400 MWt Electrical Output:  165 MWe Outlet Conditions:  Up to 900°C (1652°F) Coolant:   Helium Fuel Design:  ~450,000 low-enriched UO2 TRISO fuel particles in pebbles Refueling:  Online Letter of Intent:  Updated March 24, Licensing Plan:  Design Certification Expected Submittal:  FY2013 Design Information:  Modular, gas-cooled, pebble bed reactor with online refueling that generates electricity via a gas or steam turbine and which may also be used for process heat applications. Status/Other Info:  Licensing of a demonstration plant in South Africa is being reconsidered. Agreement with Chinese for cooperation in development.

29 Super-Safe, Small and Simple (4S)
Designer:  Toshiba Corporation Reactor Power:  30 MWt Electrical Output:  10 MWe Outlet Conditions:  510°C Coolant:  Liquid-metal (sodium) Fuel Design:  18 hexagonal fuel assemblies - U-10%Zr Alloy with 19.9% enrichment Refueling:  30 years Letter of Intent:  Updated March 13, Licensing Plan:  Design Approval Expected Submittal:  October Design Information:  Small, sodium-cooled, underground reactor Status/Other Info:  Working with the city of Galena, AK as a potential COL partner.

30 Hyperion Power Module (HPM)
Designer:  Hyperion Power Generation, Inc. Reactor Power:  70 MWt Electrical Output:  25 MWe Outlet Conditions:  500C Coolant:  Lead-bismuth eutectic, primary and secondary loops Fuel Design:  Stainless steel clad uranium nitride Refueling:  Entire reactor module replaced every 7 to 10 years Licensing Plan:  Combined License (prototypical design) and/or Design Certification Design Information:  The HPM is sealed at the factory, sited underground, and eventually returned to the factory for waste and fuel disposition after a useful life of seven to ten years. The principle materials in the core are uranium nitride (UN) fuel, stainless steel as the structural material, lead-bismuth eutectic (LBE) as the coolant, quartz as the radial reflector, B4C rods and pellets for in-core reactivity control and shutdown. The LBE permits ambient pressure operation of core, eliminating pressure vessel requirements. Status/Other Info:  The outer diameter of the entire reactor system, including the outer reflector and coolant downcomer, is limited to 1.5 m to be able to seal the reactor vessel system at the fabrication facility and transport it to the site in a conventional nuclear fuel shipping cask. The total mass of the reactor vessel with fuel and coolant is <20 metric tons.

31 Power Reactor Innovative Small Module (PRISM)
Designer:  GE Hitachi Nuclear Energy (GE-H) Reactor Power:  840 MWt Electrical Output:  311 MWe Outlet Conditions:  930°F Coolant:  Liquid metal (sodium) Fuel Design:  Metallic Refueling:  12-24 months Letter of Intent:  Updated March 19, Licensing Plan:  COL Prototype (long-term - Manufacturing License) Expected Submittal:  Mid Design Information:  Underground containment on seismic isolators with a passive air cooling ultimate heat sink. Modular design with two reactor modules per power unit (turbine generator). Status/Other Info:  NRC staff conducted pre-application review in early 1990s.

32 mPower Designer:  Babcock & Wilcox Company (B&W) Reactor Power:  400 MWt Electrical Output:  125 MWe Outlet Conditions:  327°C Coolant:  Light water Fuel Design:  "Standard PWR fuel" Refueling:  5 years Letter of Intent:  April 28, Licensing Plan:  Design Certification Expected Submittal:  Q1 CY Design Information:  LWR with the reactor and steam generator located in a single reactor vessel located in an underground containment


Download ppt "資料來源:行政院原子能委員會核能研究所,2013/06"

Similar presentations


Ads by Google