Download presentation
Presentation is loading. Please wait.
1
航天
2
人类航天 1.什么是航天 2.人类航天的意义 3.航天史上的灾难 4.人类航天史 5.宇航员 6.未来航天计划 7.月球资源开发和利用
8.中国航天计划
3
航天的含义 航天(Spaceflight):又称空间飞行、太空飞行、宇宙航行或航天飞行。系指航天器在太空的航行活动。有的科学家曾把航天器在太阳系内的航行活动称为航天,航天器在太阳系外的航行活动称为航宇,现在则把航天器在太阳系内和太阳系外的航行活动统称为航天。航天活动的目的是探索、开发和利用太空与天体,为人类服务。航天的基本条件是航天器必须达到足够的速度,摆脱地球或太阳的引力。
4
航天种类 名称 任务 军用航天 执行军事任务(具有军事目的)的航天活动 民用航天
返回 名称 任务 军用航天 执行军事任务(具有军事目的)的航天活动 民用航天 执行科学研究、经济开发、工业生产等民用任务(具有非军事目的)的航天活动 商业航天 执行商业合同任务(以营利为目的)的航天活动 载人航天 有人驾驶航天器的航天活动 不载人航天 没有人驾驶航天器的航天活动 返回
5
航天的意义 1.载人航天事业是人类历史上最为复杂的系统工程之一,它的发展取决于整个科技水平的发展。同时,它也影响这整个现代科学技术领域的发展,同时对于现代科学技术的各个领域提出了新的发展要求,从而可促进和推动整个科学技术的发展。一个国家载人航天技术的发展,可以反映出这个国家的整体科学技术和高科技产业水平,如系统工程、自动控制技术、计算机系统、推进能力、环控生保技术、通信、遥感以及测试技术等诸多方面。它也能体现这个国家近代力学、天文学、地球科学和空间科学的发展水平。没有航天医学工程的研究与发展,要想把人送进太空并安全、健康而有效地生活和工作是不可能的。美国赫赫有名的"阿波罗"计划从1961年开始实施至1972年结束,共花费240亿美元,先后完成6次登月飞行,把12人送上月球并安全返回地面。它不仅实现了美国赶超苏联的政治目的,同时也带动了美国科学技术特别是推进、制导、结构材料、电子学和管理科学的发展。在中国综合国力不断增强的今天,载人航天事业的发展能在极大程度上实现中国科技力量的跨越式发展。
6
2.发展载人航天是当今各国综合国力的直接体现。各发达国家都在发展战略上都将增强综合国力作为首要目标,其核心就是高科技的发展,而载人航天技术就是其主要内容之一。一个国家如果能将自己的宇航员送入太空,不仅仅是国力的体现,而且也将在很大程度上增前民众的自豪感,提高民族精神,增强凝聚力。特别是现在的“神州飞船”计划一旦获得成功,将如同60年代的“两弹一星”工程一样,引起全世界的注视,提高我国的国际地位。 3.毫无疑问,在地球资源日渐枯竭的未来,对太空资源的开发和利用就日渐重要。而载人航天技术显然在其中占有重要地位。现在已知浩瀚的太空是拥有丰富资源的巨大宝库,载人航天事业就是通向这个宝库的桥梁。“太空工厂”可以几乎像是在变魔术一般,在微重力、真空和无对流的条件下,制造出地球上难以形成的合金材料和其它的相关产品,可以想象如果说前三次工业革命给人类带来了巨大的财富,那么这次由太空技术引发的“新工业革命”最终将改变整个人类社会的现有模式,“Made In Space”的字样将充满整个市场的各个角落。中国要想在未来市场中占据一席之地,离不开开发太空资源的基础——载人航天技术。 返回
7
时间 国籍 事件 苏联 美国 1960年10月24日 苏联拜科努尔航天中心火箭发射爆炸事故造成地面100多人死亡。 1961年3月23日
苏联第一个首航太空的宇航员邦达连科被严重烧伤,10个小时后死亡,成为人类载人航天活动中第一个遇难的宇航员。 1967年1月27日 美国 美国肯尼迪航天中心在进行载人飞船地面联合模拟飞行试验时,飞船 指令舱意外起火,在几十秒内3名航天员被烧死在舱内。 1971年6月30日 苏联联盟11号飞船在再入大气层前,实施返回舱和轨道舱分离时,连接两舱的分离插头分离,3名宇航员因急性缺氧、体液沸腾而死亡。 1980年3月18日 苏联普列谢茨克航天发射场火箭发射爆炸导致地面50名技术人员丧生。
8
时间 国籍 事件 美国 巴西 1986年1月28日 1986年4月18日 2003年2月1日 2003年8月22日
美国“挑战者”号航天飞机在第10次飞行时,发生爆炸,7名航天员当场遇难。 1986年4月18日 美国空军的一枚大力神火箭在加利福尼亚州南部的范登堡空军基地发射,几秒钟后爆炸,58人受伤。 2003年2月1日 美国“哥伦比亚”号航天飞机在从太空返回地面途中解体,机上7名宇航员全部遇难。下图为残片燃烧引发的滚滚浓烟。 2003年8月22日 巴西 巴西第三枚VLS型卫星运载火箭在发射前进行的最后测试中爆炸。
9
尽管灾难重重,再大的困难也阻挡不了人类前进的脚步。
返回
10
1961年4月12日,苏联发射世界第一艘载人飞船“东方”1号。尤里·加加林少校乘“东方”1号飞船用了108分钟绕地球运行一圈后,在萨拉托夫附近安全返回。加加林成为世界上第一位遨游太空的航天员,使苏联在与美国开展的载人航天竞赛中赢得了世界第一。1968年3月27日,加加林驾驶米格15歼击机训练时,因飞机事故遇难身亡。 1961年5月5日,美国第一位进行亚轨道飞行的航天员艾伦·B·谢泼德驾驶美国“水星”MR3飞船进行首次载人亚轨道飞行,美国因此成为继苏联之后世界上第二个具有载人航天能力的国家。 1961年5月25日,美国总统肯尼迪在国会宣布:在60年代结束之前,美国要把人送上月球,并安全返回地面。从此,美国正式开始实施举世闻名的“阿波罗”载人登月工程计划。这是在与苏联之间展开的谁第一个把人送上天的竞赛中失利后,美国发起的又一个竞赛项目。 1962年2月20日,美国发射载人飞船“水星”6号,航天员欧约翰·H·格伦中校驾驶“水星”6号飞船绕地球飞行3圈,历时4小时55分23秒,在大西洋海面安全返回。格伦因此成为美国第一个进入地球轨道的人。 1962年8月11日,苏联发射载有尼古拉耶夫少校的“东方”3号飞船上天。8月12日,苏联发射载有波波维奇中校的“东方”4号飞船上天。“东方”4号与“东方”3号首次在太空实现载人飞船的交会飞行,最近相距5公里,第一次从太空传回电视。 。。。。。。
11
1995年6月27日,美国“亚特兰蒂斯”号航天飞机载着5名美国航天员和2名俄罗斯航天员升空,首次实现与俄罗斯“和平”号空间站对接飞行。此后一直到1998年,美国航天飞机与俄罗斯“和平”号空间站进行了8次对接飞行,所取得的成功经验降低了目前正在组装的国际空间站装配和运行中的技术风险。 1996年9月26日,在俄罗斯“和平”号空间站上工作的美国女航天员露西德乘“亚特兰蒂斯”号航天飞机返回地面。露西德在太空生活了188天,打破了俄罗斯航天员康达科娃创造的女性在太空飞行的最高纪录。 1998年11月20日,俄罗斯用“质子”K火箭将国际空间站的第一个部件——“曙光”号多功能舱送入太空,建造国际空间站的宏伟而艰巨的任务从此拉开了帏幕。国际空间站是由美国和俄罗斯牵头、欧洲11国(即德国、法国、意大利、英国、比利时、荷兰、西班牙、丹麦、挪威、瑞典和瑞士)、日本、加拿大和巴西共16个国家建造的,预计要到2006年才能全部建成。建成后的国际空间站长110米,宽88米,大致相当于两个足球场大小,总质量达400余吨,将是有史以来规模最为庞大、设施最为先进的人造天宫,运行在倾角为51.6°、高度为397公里的轨道上,可供6~7名航天员在轨工作,之后国际空间站将开始一个为期10~15年的永久载人的运行期。 2001年4月28日,世界上首位太空游客、美国富翁蒂托搭乘“联盟”TM32号飞船从哈萨克斯坦拜科努尔航天发射场出发,到国际空间站上旅游观光8天,5月6日返回地面。蒂托此行耗资2000万美元,除了太空观光外,他还负责飞船的一部分无线电通信、导航和供电任务,并与俄宇航员一起执行了对地观测任务。蒂托的太空之旅开创了太空旅游的新时代。2002年4月25日~5月5日,世界上第二位太空游客、南非亿万富翁马克·沙特沃斯也在太空度过了10天的时光,其中8天生活和工作在国际空间站上。
12
1986年2月20日,苏联发射了第三代长期载人空间站——“和平”号空间站的核心舱。此后历时10年,直到1996年4月26日,苏联(俄罗斯)才建成由核心舱、“量子”1号舱、“量子”2号舱、“晶体”舱、“光谱”舱和“自然”舱组成的完整的“和平”号空间站。2003年3月23日,“和平”号在绕地球飞行8万多圈、行程约35亿公里、超期服役近10年后,坠毁在太平洋预定海域。作为世界上第一个长期载人空间站,“和平”号是20世纪质量最大、载人最多和寿命最长的航天器,堪称“一代天骄”!在“和平”号天马行空近15载中,共接待了来自10多个国家和国际组织的航天员100多人次。其中俄罗斯航天员在“和平”号上创造了两项太空飞行纪录:一项是由玻利亚科夫创造的、人在太空连续生活和工作438天的世界纪录,另一项是由阿夫杰耶夫创造的、在太空飞行累计时间达748天的世界纪录。科学家们利用“和平”号空间站进行了包括生命科学、微重力科学与应用、空间科学、对地观测等众多领域的成千上万项科学实验,取得了举世瞩目的丰硕成果。 返回
13
航天服的构造
14
在载人飞船的升空、飞行以及着陆过程中,宇航员都将面临极为严酷的生理以及心理考验,因此要求宇航员具有非常优秀的生理心理素质,对航天特殊恶劣环境有很强的适应能力。
目前, 各国的宇航员都是从优秀的空军战斗机飞行员中选拔出来的,高速喷气式战斗机的起飞和着陆速度快,操作复杂,很容易造成生命威胁,对人的协调性和反应能力要求高,要求飞行员能够适应高低气压迅速的变化,在承受超重失重的情况下仍能对飞机上复杂的仪表进行正确的判断与操作,这与对宇航员的要求相似。 中国宇航员的标准身高为1.70米左右,体重在65公斤上下。 身体素质作为一个人生存的基本条件,在宇航员的训练过程中是必不可少的。前苏联就曾要求其宇航员在一年半的训练时间内,骑自行车1000千米,滑雪3000千米,越野跑步200多千米。美国为提高宇航员耐力,曾让宇航员穿上80千克重的航天服,在炎热的佛罗里达沙漠中,每天步行30千米。
15
超重适应性训练的目的是让宇航员适应航天器发射和返回再入时的超重环境,增强宇航员抗超重的能力。训练方法主要在离心机上加上8个G的超重并模拟航天器起飞和返回过程中的超重曲线,考察并训练宇航员的承受力和反应能力。 失重训练则是利用失重飞机使宇航员感受、体验和熟悉失重环境;在失重的时间里可以做各种试验,如吃东西、喝水、穿脱衣服、闭眼与睁眼的定向运动;甚至可把一个舱体搬进机舱中,进行人在失重状态下从舱体爬出来的试验,从而训练太空的出舱活动。在地面还可以用中性浮力水槽产生的漂浮感觉,模拟训练宇航员在失重时进行工作和维修。 为了减少航天运动病的发病率,还要进行前庭功能训练。采用转椅、秋千等旋转和摆动设备产生线性加速度和旋转加速度,或在失重飞机上让宇航员头部运动,对宇航员的前庭器官进行刺激,以提高前庭器官的耐受能力。也可以利用气功和生物反馈的方法对宇航员进行抗运动病的训练。其它的特殊环境因素适应性训练还有剧烈振动、噪声、高低温体验,乘员舱大气环境体验、隔离环境体验以及缺氧耐力检查和体验等。为了防止宇航员舱外活动时发生减压病,在选拔宇航员时,要严格淘汰对减压病的易感者。研究发现,肥胖的人易患减压病,血中的胆固醇、血浆中的补体和尿中的儿茶酚胺的生化指标等同减压病有关。 除了出众的身体素质外,宇航员还要具有优秀的心理素质,必须要具有临危不乱,泰然处之的果敢与超出常人的心境。
16
载人航天器在应急返回过程中可能降落到各种复杂的地形、气候等恶劣的生存环境条件下,例如寒区、沙漠、山地、森林、海上等,因此通过救生与生存训练,提高宇航员在恶劣环境中的生存能力和自救、互救能力,使他们熟悉和掌握这些地区气候变化,地形、海况、动植物的情况,掌握生存的基本要领。比如在寒区生存要保持机体的热平衡,在原始森林生存要防御猛兽和昆虫的侵袭,在沙漠中生存要保持水盐代谢的平衡等。 返回
17
美国 ★美国:登月——登陆火星计划 美国在航天事业的野心是有目共睹的。只是上个世纪六、七十年代实现了宇航员登月似乎远远不够,美国航空航天局前不久还雄心勃勃地重申了自己的再次登月计划。而登月只不过是美国未来航天计划的前奏,好戏还在后面。 2004年1月14日,美国总统布什在美国航空航天局(NASA)总部宣布了新的太空计划:在月球上建立永久性基地,并以月球为中继站登陆火星。而在今年9月,美国航空航天局局长格里芬亲自上阵印证布什总统的太空计划,揭开了美国计划在2018年送4名宇航员再次登月的神秘面纱,并展望了建立月球基地的广阔前景。美国正在以太空探索前20年征程中的领军人物布朗提出的 “循序渐进”方式,从发射环绕地球卫星开始,一步一步地深入太空,再以月球为跳板进军火星。 按照美国的计划,登月实现以后,美国航空航天局将在2020年左右开始细化火星登陆计划。目前美宇航局对此的初步构想是先用4到5枚大型运载火箭把火星飞船和其它硬件设备送向火星表面,在火星表面上建立一个宇航员基地,再把6名宇航员送上火星,进行为期500天的科学考察和研究,美国的太空野心由此可见一斑。
18
俄罗斯 ★俄罗斯:空间站——商业航天计划 虽然在太空战场上,美国表现得很英勇,但是在国际空间站的建设上,美国却当了“逃兵”。由于航天飞机接连出事,美国暂停了对国际空间站的货物供给和宇航员输送。相对于美国的“逃兵”行径,同为国际空间站发起国和建设国的俄罗斯就颇显责任感。在今年7月份的俄2006至2015年联邦航天计划草案中,俄罗斯方面就明确提及,未来十年内,建设国际空间站仍然是俄罗斯主要航天计划之一。 按照当初的计划,国际空间站应该在2010年建成。对此,俄罗斯联邦航天局局长安纳托利-佩尔米诺夫在7月份的政府工作会议上表示,俄罗斯将在2007年向国际空间站发射多用途试验舱、2009年发射能源舱,争取在2010年时完成国际空间站俄罗斯舱段建设。除此之外,俄罗斯还将在2011年前制造出“快帆”多次往返式载人飞船,保证为国际空间站服务并用于将来的星际探索任务。
19
欧洲 ★欧洲:探测器——星际探索计划 和其它航天势力不同的是,欧洲空间局太空探索重点不在载人航天上,而是一系列深空探测计划。作为太空中一支越来越惹人注目的奇葩,欧洲空间局向深空迈进的脚步正在把同行们甩得越来越远。 2003年6月,“火星快车”出发飞向遥远的火星,顺利进入火星轨道并展开了一系列探测活动;2003年9月, “智慧一号”起飞了,冲向了月球,进入月球轨道,并开展了各项探月工作;2005年,“惠更斯”在“卡西尼”的搭载下顺利着陆,在“土卫六”上触地得分;如今,“罗塞塔”也在飞往彗星的路上;不久,“金星快车”也要上路;期待中,水星探测器将要在2009年启航……欧空局的一系列太空活动使人们看到的是更多的科学探索精神,而不是太空竞争色彩。 未来十年里,欧洲航天局还将于2009年至2012年间发射两颗GAIA卫星,用于精确测量太空中十多亿颗恒星的位置,了解银河系的起源和历史;于2013年左右发射埃丁顿卫星,寻找遥远星系的小行星;于2010年后启动达尔文计划,在距地球几光年之遥的太空寻找生命存在的踪迹;并于2010年启动“莉萨”计划。发射3颗卫星,组成一个边长为500万公里的巨大三角形,它们之间将以激光束相连,获得引力理论的事实证据;欧空局还将开展太阳探索计划,获得太阳极地变化活动的清晰图像,了解太阳两极的有关情况。欧空局的深空探索步伐将越走越远。
20
日本 日本:登月——月球基地计划 日本的野心,不仅体现在军事政治上,在太空竞技场上也一样。虽然日本的航空航天技术不像其经济技术一样惹人注目,但是其在航天事业里做出的种种举动宣言却令人不得不关注。今年2月,日本宇宙航空研究开发机构宣布了其航天发展长期计划的制定,其中甚至包括开发载人航天飞行和2025年建立月球研究基地的构想。 按照日本这项雄心勃勃的未来航天计划,日本将在未来5年内研制出能够在月球进行探险的机器人,并在10年内,开发出能够使人类在月球长期停留的一整套技术。日本还计划在20年内,即在2025年,开始在月球上建造进行科学研究的基地。为了建设这个基地,日本航天部门计划在2025年之前开发出类似美国航天飞机、能够反复使用的太空飞行工具,并打算在此之前开发出太阳能发电卫星为月球基地提供能源。 同时,日本航天部门还打算将距离地球150万公里以外的太空定位为“深太空港”,计划在那里安装光学望远镜和X射线望远镜为人类探测木星和土星提供方便。如果上述计划获得政府批准,日本宇宙航天研究开发机构的预算就将增加6倍,达到6万亿日元(约合570亿美元)
21
韩国 ★韩国:飞天——航天“十强”计划 看着东亚和南亚诸国都在航天事业上迈大脚步,经济发达的韩国自然也不能落后。为了缩短与亚洲航天国家的距离,韩国科学技术部在2004年10月宣布,该国将在俄罗斯有关方面的帮助下,于2005年挑选两名宇航员前往俄罗斯接受为期18个月的培训,并于三年后的2007年前往太空,进驻国际空间站并在那里停留10天,进行各种实验。两名韩国宇航员的太空之旅将花费2273万美元。 目前,韩国正在与俄罗斯积极展开太空领域的合作。合作协议是2004年两国总统亲自会谈后双方签署的,根据这份协议,俄罗斯还将为韩国太空计划提供帮助,主要帮助韩国发射卫星。而韩国本国也在加强自身航天素质,科技部官员今年9月宣称,韩国今后十年将投巨资发展航天事业,力争跻身世界航天大国“十强”。从2006年至2010年,韩国计划投资1.3958万亿韩元,用于开发卫星、研发运载工具、建立航天中心、进行航天技术开发和开展国际合作等航天项目。 返回
22
月球的开发利用 今年3月5日,美国航天局的科学家宣布,他们在月球表面发现了水。这个消息立即引起了全世界的关注。
两个月前,美国于佛罗里达发射了“月球勘探者”号机器人探测器,经过对月球表面7个星期的扫描,该探测器上的中子谱分析器发回 的数据表明,月球陨石坑底部的土质很松,里面有大量的氢,而氢的存在表明干土里有冰碴。 “月球勘探者”号首席分析家艾伦·宾德博士欣喜若狂地说,“我们找到了水!”他认为,这一发现证实:在过去几十亿年里,冰彗星和冰陨石袭击月球时,把冰留在了月球上。而根据探测器发回的初步数据推断:月球上水的总储量有可能在1100万吨到3.3亿吨之间。 月球上发现水的意义极其重大。科学家认为,即使月球上水的储量只有3300万吨,也可保证2000人在月球表面上生活100多年。可为人类从月球上继续探索太空提供原料和燃料。而如果从地球向月球运输3300万吨水,至少要耗资60万亿美元。因此,这一发现可能成为人类走向太空的一个新的里程碑。
23
月亮是地球唯一的天然卫星,在人类开发外层空间中具有特殊的地位。它不仅是人类探测太阳系和其他星球最理想的跳板和中转基地,
而且还蕴藏着丰富的资源,其表面存在的氦-3是地球上难得的核燃料,若全部开采,可满足全世界几百年甚至上千年的能源需求。此外,月 球还是理想的天文、重力波物理和中微子物理等学科的实验和观测地。 人类一直梦寐以求开发月球。50年代末至70年代初,美、苏曾向月球发射了40多个探测装置。1969年至1972年更是实现了人类登月的壮举,其间先后有12名宇航员登上月球。但自最后一次“阿波罗”载人飞船登月的25年以来,由于月球考察耗费巨大,收效甚微,无论美国还是苏联,对月球的探测基本处于停滞状态。
24
中国航天计划 我国将于2010年—2011年底发射天宫一号目标飞行器,天宫一号的重量有8吨,类似于一个小型空间实验站,在发射天宫一号之后的两年中,我国将相继发射神舟8、9、10号飞船,分别与天宫一号实现对接。 我国有望于2014年用“长征五号”把中国空间站送上太空,中国最终将建设一个基本型空间站。 我国首个空间站大致包括一个核心舱、一架货运飞船、一架载人飞船和两个用于实验等功能的其他舱,总重量在100吨以下。其中的核心舱需长期有人驻守,能与各种实验舱、载人飞船和货运飞船对接。具备20吨以上运载能力的火箭才有资格发射核心舱。为此,我国将在海南文昌新建第四个航天发射场,可发射大吨位空间站。 据透露,中国的首个空间站建成后,其核心舱可以不断加舱。届时,每年将往空间站发射若干个航天器。 据了解,2008年9月25日发射的“神舟七号飞船”,作为第二阶段的第一项实验,将实现航天员的出舱行走。随后的“神八”、“神九”飞船将不再载人,旨在发射目标飞行器,实现无人对接。而之后的“神十”将再次载人上天并实现有人对接。这些飞船都是为了在太空建设短期有人照料的空间站而服务的
Similar presentations