Download presentation
Presentation is loading. Please wait.
1
3.4 与水相关的食品学问题及相关技术原理 3.4.1 水分活度与食品的稳定性
下面几张图说明了食品中的化学反应及微生物的活性与水分活度有密切的关系,因此食品的水分活度对食品的稳定性产生着巨大的影响。
2
在此范围内的最低aw所能抑制的微生物种类
3.4.2 水分活度与微生物生命活动的关系 食品质量及食品加工工艺的确定与微生物有密切的关系。而食品中微生物的存活及繁殖生长与食品中水分的活度有密切的关系。下表列出了不同微生物生长与食品水分活度的关系。 表3.1 食品中水分活度与微生物生长 aw范围 在此范围内的最低aw所能抑制的微生物种类 在此水分活度范围内的食品 1.00~0.95 0.95~0.91 0.91~0.87 0.87~0.80 0.80~0.75 0.75~0.65 0.65~0.6 小于0.5 假单胞菌、大肠杆菌变形杆菌、志贺氏菌属、克霍伯氏菌属、芽孢杆菌、产气荚膜梭状芽孢杆菌、一些酵母 沙门氏杆菌属、溶副血红蛋白弧菌、肉毒梭状芽孢杆菌、沙雷氏杆菌、乳酸杆菌属、足球菌、一些霉菌、酵母 许多酵母、小球菌 大多数霉菌、金黄色葡萄球菌、大多数酵母菌属 大多数嗜盐细菌、产真菌毒素的曲霉 嗜旱霉菌、二孢酵母 耐渗透压酵母、少数霉菌 微生物不增殖 极易腐败变质(新鲜)的食品、罐头水果、蔬菜、肉、鱼及牛奶,熟香肠和面包,含有约40%(w/w)蔗糖或7%食盐的食品 一些干酪、腌制肉、一些水果汁浓缩物,含有55%蔗糖(饱和)或12%食盐的食品 发酵香肠、松蛋糕、干的干酪、人造奶油、含65%蔗糖(饱和或15%食盐的食品 大多数浓缩果汁、甜炼乳、巧克力糖浆、槭糖浆和水果糖浆,面粉,米,含有15~17%水分的豆类食品水果蛋糕,家庭自制火腿等 果酱、加柑橘皮丝的果冻、杏仁酥糖、糖渍水果、一些棉花糖 含10%水分的燕麦片、砂性软糖、棉花糖等 含15~20%水的果干、蜂蜜等
3
由上表可以看出:a. 不同种类的微生物其正常生长繁殖所需要的水分活度不同,由此可以正确推断影响不同含水量食品质量的主要微生物;b
不同种类的微生物其存活和生长与水分活度有关系,同一种类微生物在不同的生长阶段也要求不同的水分活度。一般讲,细菌形成芽孢时比繁殖时所需的水分活度要高;产毒微生物在产生毒素时所需的水分活度高于不产毒时所需的水分活度。 由以上讨论可以得出结论,当食品的水分活度降低到一定的限度以下时,就会抑制要求水分活度阈值高于此值的微生物的生长、繁殖或产生毒素,使食品加工和贮藏得以顺利进行。当然发酵技术中要求所用微生物能正常快速增殖,此时则要给予合适的、必要高的水分活度;另外,利用水分活度控制食品质量或加工工艺时还要考虑pH、营养成分、氧气等因素对于微生物的影响。 3.4.3 水分活度与食品化学变化的关系 食品中的水分活度与食品中所发生的化学变化的种类和速度有密切的关系;而食品中的化学变化是依赖于各类食品成分而发生的。以各类食品成分为线索,其化学变化与水分活度关系的一般规律总结如下:
4
淀粉:淀粉的食品学特性主要体现在老化和糊化上。老化是淀粉颗粒结构、淀粉链空间结构发生变化而导致溶解性能、糊化及成面团作用变差的过程。在含水量大30~60%时,淀粉的老化速度最快;降低含水量老化速度变慢;当含水量降至10~15%时,淀粉中的水主要为结合水,不会发生老化。 脂肪:影响脂肪品质的化学反应主要为酸败,而酸败过程的化学本质是空气氧的自动氧化。脂类的氧化反应与水分含量之间的关系为:在Ⅰ区,氧化反应的速度随着水分增加而降低;在Ⅱ区,氧化反应速度随着水分的增加而加快;在Ⅲ区,氧化反应速度随着水分增加又呈下降趋势。其原因是在非常干燥的样品中加入水会明显干扰氧化,本质是水与脂肪自由基氧化中形成的氢过氧化合物通过氢键结合,降低了氢过氧化合物分解的活性,从而降低了脂肪氧化反应的速度;从没有水开始,随着水量的增加,保护作用增强,因此氧化速度有一个降低的过程;除了水对氢过氧化物的保护作用外,水与金属的结合还可使金属离子对脂肪氧化反应的催化作用降低。当含水量超过Ⅰ、Ⅱ区交界时,较大量的水通过溶解作用可以有效地增加氧的含量,还可使脂肪分子通过溶胀而更加暴露;当含水量到达Ⅲ区时,大量的水降低了反应物和催化剂的浓度,氧化速度又有所降低。 蛋白质及酶:据测定,当食品中的水分含量在2%以下时,可以有效的阻止蛋白质的变性;而当达到4%或其以上时,蛋白质变性变得越来越容易。
5
水促使蛋白质变性的原因是,水能使多孔蛋白质润胀,暴露出长链中可能被氧化的基团,导致氧化反应的发生,破坏保持蛋白质高级结构的弱键,从而使蛋白质变性。褐变反应是影响食品质量和外观特性的重要的化学反应,包括酶促褐变和非酶褐变两类。酶促褐变是在酶作用下,食品中的酚类化合物发生特殊的氧化反应使食品颜色变劣的过程。当食品中的水分活度在0.25~0.30之间时,酶促褐变可被有效防止;但当水分活度在此基础上增加时,酶促反应就会明显发生。 非酶褐变指食品通过一些非酶氧化而导致食品变色的反应。也与水分活度有密切的关系,当食品中的水分活度在0.6~0.7之间时,非酶褐变最为严重;水分活度下降,褐变速度减慢,在0.2以下时,褐变难以发生。但当水分活度超过褐变高峰要求的值时,其褐变速度又由于体系中溶质的减少而下降。 水溶性色素:一般而言,当食品中的水分活度增大时,水溶性色素(常见的是花青素类)分解的速度就会加快。 总之,降低食品中的水分活度,可以延缓酶促褐变和非酶褐变的进行,减少营养成分的破坏,防止水溶性色素的分解。但水分活度太低,反而会加速脂肪的氧化酸败。要使食品具有最高的稳定性,最好将水分活度保持在结合水范围内。这样,既可使化学变化难以发生,同时又不会使食品丧失吸水性和持水性。
6
水分活度影响食品稳定性的原因可以概括为:
3.4.4 冰在提高食品稳定性中的作用 冷藏是食品加工及贮运过程中的主要技术,这是因为在低温的条件下,食品的稳定性提高。 低温提高食品稳定性的主要原因是降低了大多数化学反应的速度。但是在低温条件下,并不是所以反应都被抑制,相反有些反应的速度或在某种程度上被提高。例如一些Vc、Va、胡萝卜素、蛋白质等的氧化、磷脂的水解等反应。 低温提高一些食品化学反应速度的原因有两个方面。其一,在冻结情况下,由于结冰导致自由水的含量减少及产生的浓缩效应,使得自由水中的非水物质的浓度大大提高,其pH值、离子强度、黏度、表面和界面张力及氧化-还原电位的发生大的改变,促进了非水物质之间的接触机会,为一些反应创造了合适的反应条件;其二,使酶的浓度提高,酶与激活剂、底物之间的接触机会大大提高。
Similar presentations