Presentation is loading. Please wait.

Presentation is loading. Please wait.

1.1 计算机网络在信息时代的作用 1、关于计算机网络

Similar presentations


Presentation on theme: "1.1 计算机网络在信息时代的作用 1、关于计算机网络"— Presentation transcript:

1 1.1 计算机网络在信息时代的作用 1、关于计算机网络
1.1 计算机网络在信息时代的作用 1、关于计算机网络 21 世纪的一些重要特征就是数字化、网络化和信息化,它是一个以网络为核心的信息时代。 网络是指“三网”,即电信网络、有线电视网络和计算机网络。 发展最快的并起到核心作用的是计算机网络。

2 2、因特网(Internet)的发展 进入 20 世纪 90 年代以后,以因特网为代表的计算机网络得到了飞速的发展。
已从最初的教育科研网络逐步发展成为商业网络。 已成为仅次于全球电话网的世界第二大网络。

3 3、因特网的意义 因特网是自印刷术以来人类通信方面最大的变革。 现在人们的生活、工作、学习和交往都已离不开因特网。

4 4、计算机网络向用户提供的 最重要的功能 连通性——计算机网络使上网用户之间都可以交换信息,好像这些用户的计算机都可以彼此直接连通一样。
共享——即资源共享。可以是信息共享、软件共享,也可以是硬件共享。

5 1.2 因特网概述 1.2.1 网络的网络 1、网络(network)由若干结点(node)和连接这些结点的链路(link)组成。
1.2 因特网概述 网络的网络 1、网络(network)由若干结点(node)和连接这些结点的链路(link)组成。 2、互联网是“网络的网络” :即网络和网络通过路由器互连起来,构成一个更大的网络即互联网。 连接在因特网上的计算机都称为主机(host)。

6 (a) (b) 网络 互联网(网络的网络) 结点 链路

7 主机 因特网

8 1.2.2 因特网发展的三个阶段 第一阶段: 是从单个网络 ARPANET 向互联网发展的过程。
因特网发展的三个阶段 第一阶段: 是从单个网络 ARPANET 向互联网发展的过程。 1983 年 TCP/IP 协议成为 ARPANET 上的标准协议。 人们把 1983 年作为因特网的诞生时间。

9 internet 和 Internet 的区别
以小写字母 i 开始的 internet(互联网或互连网)是一个通用名词,它泛指由多个计算机网络互连而成的网络。 以大写字母I开始的的 Internet(因特网)则是一个专用名词,它指当前全球最大的、开放的、由众多网络相互连接而成的特定计算机网络,它采用 TCP/IP 协议族作为通信的规则,且其前身是美国的 ARPANET。

10 第2阶段:三级结构的因特网 三级计算机网络是指,主干网、地区网和校园网(或企业网)。

11 第3阶段:多层次 ISP 结构的因特网 第三阶段的特点是逐渐形成了多层次 ISP 结构的因特网。
出现了因特网服务提供者 ISP (Internet Service Provider)。

12 1、用户通过 ISP 上网 用户 因特网 服务提供者 因特网 ISP1 ISP2 根据提供服务的覆盖面积大小以及所拥有的
IP 地址数目的不同,ISP 也分成为不同的层次。

13 本地 ISP 第三层 本地 ISP 本地 ISP 第二层 本地 ISP 第二层 ISP 大公司 第一层 本地 ISP 大公司 本地 ISP
NAP 一级 ISP NAP 第一层 ISP 第二层 ISP 本地 ISP 本地 ISP 第二层 ISP 第二层 ISP 大公司 本地 ISP 本地 ISP 本地 ISP 本地 ISP 公司 A B 校园网 校园网 校园网 校园网 主机A → 本地 ISP → 第二层 ISP → NAP → 第一层 ISP → NAP → 第二层 ISP → 本地 ISP → 主机B

14 2、万维网 WWW 的问世 因特网已经成为世界上规模最大和增长速率最快的计算机网络,没有人能够准确说出因特网究竟有多大。
因特网的迅猛发展始于 20 世纪 90 年代。由欧洲原子核研究组织 CERN 开发的万维网 WWW (World Wide Web)被广泛使用在因特网上,大大方便了广大非网络专业人员对网络的使用,成为因特网的这种指数级增长的主要驱动力。

15 3、因特网的发展情况概况 网络数 主机数 用户数 管理机构数 1980 10 102 102 100
网络数 主机数 用户数 管理机构数

16 1.2.3 关于因特网的标准化工作 1、因特网管理委员会
关于因特网的标准化工作 1、因特网管理委员会 因特网协会 ISOC 因特网体系结构 研究委员会 IAB 因特网研究部 IRTF 因特网工程部 IETF 因特网工程指导小组 IESG 因特网研究指导小组 IRSG 领域 领域 RG RG WG WG WG WG

17 2、制订因特网的正式标准要经过以下的四个阶段
因特网草案(Internet Draft) ——在这个阶段还不是 RFC 文档。 建议标准(Proposed Standard) ——从这个阶段开始就成为 RFC 文档。 草案标准(Draft Standard) 因特网标准(Internet Standard)

18 1.3 因特网的组成 从因特网的工作方式上看,可以划分为以下的两大块:
1.3 因特网的组成 从因特网的工作方式上看,可以划分为以下的两大块: (1) 边缘部分 由所有连接在因特网上的主机组成。这部分是用户直接使用的,用来进行通信(传送数据、音频或视频)和资源共享。 (2) 核心部分 由大量网络和连接这些网络的路由器组成。这部分是为边缘部分提供服务的(提供连通性和交换)。

19 因特网的边缘部分与核心部分 因特网的边缘部分 主机 路由器 网络 因特网的核心部分

20 1.3.1 因特网的边缘部分 处在因特网边缘的部分就是连接在因特网上的所有的主机。这些主机又称为端系统(end system)。
因特网的边缘部分 处在因特网边缘的部分就是连接在因特网上的所有的主机。这些主机又称为端系统(end system)。 在网络边缘的端系统中运行的程序之间的通信方式通常可划分为两大类: 客户服务器方式(C/S 方式) 即Client/Server方式 对等方式(P2P 方式) 即 Peer-to-Peer方式

21 1.3.2 因特网的核心部分 网络核心部分是因特网中最复杂的部分。
因特网的核心部分 网络核心部分是因特网中最复杂的部分。 网络中的核心部分要向网络边缘中的大量主机提供连通性,使边缘部分中的任何一个主机都能够向其他主机通信(即传送或接收各种形式的数据)。 在网络核心部分起特殊作用的是路由器(router)。 路由器是实现分组交换(packet switching)的关键构件,其任务是转发收到的分组,这是网络核心部分最重要的功能。

22 路由器的重要任务 路由器是实现分组交换(packet switching)的关键构件,其任务是转发收到的分组,这是网络核心部分最重要的功能。

23 1. 电路交换的主要特点 两部电话机只需要用一对电线就能够互相连接起来。

24 更多的电话机互相连通  5 部电话机两两相连,需 10 对电线。 N 部电话机两两相连,需 N(N – 1)/2 对电线。
当电话机的数量很大时,这种连接方法需要的电线对的数量与电话机数的平方成正比。

25 使用交换机 当电话机的数量增多时,就要使用交换机来完成全网的交换任务。 交换机

26 “交换”的含义 在这里,“交换”(switching)的含义就是转接——把一条电话线转接到另一条电话线,使它们连通起来。
从通信资源的分配角度来看,“交换”就是按照某种方式动态地分配传输线路的资源。

27 电路交换的特点 电路交换必定是面向连接的。 电路交换的三个阶段: 建立连接 通信 释放连接

28 电路交换举例 ( ( ( ( A 和 B 通话经过四个交换机 通话在 A 到 B 的连接上进行 交换机 中继线 交换机 用户线 中继线 A
C 用户线 ( D

29 电路交换传送计算机数据效率低 计算机数据具有突发性。 这导致通信线路的利用率很低。

30 2. 分组交换的主要特点 在发送端,先把较长的报文划分成较短的、固定长度的数据段。 假定这个报文较长 不便于传输 报文
假定这个报文较长 不便于传输

31 添加首部构成分组 每一个数据段前面添加上首部构成分组。 请注意:现在左边是“前面” 报文 数 据 数 据 数 据 首部 分组 2 首部
数 据 数 据 数 据 首部 分组 2 首部 分组 3 首部 请注意:现在左边是“前面”

32 分组交换的传输单元 分组交换网以“分组”作为数据传输单元。 依次把各分组发送到接收端(假定接收端在左边)。 数 据 首部 分组 1 数 据
数 据 首部 分组 1 数 据 首部 分组 2 数 据 首部 分组 3

33 分组首部的重要性 每一个分组的首部都含有地址等控制信息。
分组交换网中的结点交换机根据收到的分组的首部中的地址信息,把分组转发到下一个结点交换机。 用这样的存储转发方式,最后分组就能到达最终目的地。

34 收到分组后剥去首部 接收端收到分组后剥去首部还原成报文。 分组 1 首部 数 据 分组 2 首部 数 据 分组 3 首部 数 据 收到的数据

35 最后还原成原来的报文 最后,在接收端把收到的数据恢复成为原来的报文。 这里我们假定分组在传输过程中没有出现差错,在转发时也没有被丢弃。 报文
数 据 数 据 数 据

36 分组交换网的示意图 注意分组路径的变化! H2 向 H6 发送分组 H1 向 H5 发送分组 H4 H2 D 路由器 B H6 主机 H1
E H2 向 H6 发送分组 A H1 向 H5 发送分组 H5 C H3 互联网

37 注意分组的存储转发过程 在路由器 A 暂存 查找转发表 找到转发的端口 在路由器 C 暂存 查找转发表 找到转发的端口 在路由器 E 暂存
H4 H2 在路由器 A 暂存 查找转发表 找到转发的端口 在路由器 C 暂存 查找转发表 找到转发的端口 在路由器 E 暂存 查找转发表 找到转发的端口 最后到达目的主机 H5 D 路由器 H1 向 H5 发送分组 B H6 主机 H1 E A H5 C H3 互联网

38 路由器 在路由器中的输入和输出端口之间没有直接连线。 路由器处理分组的过程是: 把收到的分组先放入缓存(暂时存储);
查找转发表,找出到某个目的地址应从哪个端口转发; 把分组送到适当的端口转发出去。

39 主机和路由器的作用不同 主机是为用户进行信息处理的,并向网络发送分组,从网络接收分组。 路由器对分组进行存储转发,最后把分组交付目的主机。

40 分组交换的优点 高效 动态分配传输带宽,对通信链路是逐段占用。 灵活 以分组为传送单位和查找路由。
高效 动态分配传输带宽,对通信链路是逐段占用。 灵活 以分组为传送单位和查找路由。 迅速 不必先建立连接就能向其他主机发送分组。 可靠 保证可靠性的网络协议;分布式的路由选择协议使网络有很好的生存性。

41 分组交换带来的问题 分组在各结点存储转发时需要排队,这就会造成一定的时延。
分组必须携带的首部(里面有必不可少的控制信息)也造成了一定的开销。

42 3、报文交换 在 20 世纪 40 年代,电报通信也采用了基于存储转发原理的报文交换(message switching)。
报文交换的时延较长,从几分钟到几小时不等。现在报文交换已经很少有人使用了。

43 三种交换的比较 电路交换 报文交换 分组交换 A B C D A B C D A B C D 报 文 P1 连接建立 P2 P1 P3 P2
数据传送 报文 P3 P4 连接释放 t A B C D A B C D A B C D 报文 报文 报文 分组 分组 分组 比特流直达终点 数据传送 的特点 存储 转发 存储 转发 存储 转发 存储 转发

44 结束

45 1. 4 计算机网络在我国的发展 (1) 中国公用计算机互联网 CHINANET (2) 中国教育和科研计算机网 CERNET
1. 4 计算机网络在我国的发展 (1) 中国公用计算机互联网 CHINANET (2) 中国教育和科研计算机网 CERNET (3) 中国科学技术网 CSTNET (4) 中国联通互联网 UNINET (5) 中国网通公用互联网 CNCNET (6) 中国国际经济贸易互联网 CIETNET (7) 中国移动互联网 CMNET (8) 中国长城互联网 CGWNET(建设中) (9) 中国卫星集团互联网 CSNET(建设中)

46 1.5 计算机网络的分类 1.5.1 计算机网络的不同定义 最简单的定义:计算机网络是一些互相连接的、自治的计算机的集合。
1.5 计算机网络的分类 计算机网络的不同定义 最简单的定义:计算机网络是一些互相连接的、自治的计算机的集合。 因特网(Internet)是“网络的网络”。

47 1.5.2 几种不同类别的网络 1、不同作用范围的网络 广域网 WAN (Wide Area Network)
几种不同类别的网络 1、不同作用范围的网络 广域网 WAN (Wide Area Network) 局域网 LAN (Local Area Network) 城域网 MAN (Metropolitan Area Network) 个人区域网 PAN (Personal Area Network)

48 2. 不同使用者的网络 从网络的使用者进行分类 公用网 (public network) 专用网 (private network)

49 3、用来把用户接入到因特网的网络 这种网络称为接入网 AN (Access Network),它又称为本地接入网或居民接入网。
接入网既不属于因特网的核心部分,也不属于因特网的边缘部分。 由 ISP 提供的接入网只是起到让用户能够与因特网连接的“桥梁”作用。

50 1.6 计算机网络的性能 1.6.1 计算机网络的性能指标 1. 速率
1.6 计算机网络的性能 计算机网络的性能指标 1. 速率 比特(bit)是计算机中数据量的单位,也是信息论中使用的信息量的单位。 Bit 来源于 binary digit,意思是一个“二进制数字”,因此一个比特就是二进制数字中的一个 1 或 0。 速率即数据率(data rate)或比特率(bit rate)是计算机网络中最重要的一个性能指标。速率的单位是 b/s,或kb/s, Mb/s, Gb/s 等 速率往往是指额定速率或标称速率。

51 2. 带宽 “带宽”(bandwidth)本来是指信号具有的频带宽度,单位是赫(或千赫、兆赫、吉赫等)。
2. 带宽 “带宽”(bandwidth)本来是指信号具有的频带宽度,单位是赫(或千赫、兆赫、吉赫等)。 现在“带宽”是数字信道所能传送的“最高数据率”的同义语,单位是“比特每秒”,或 b/s (bit/s)。

52 常用的带宽单位 更常用的带宽单位是 请注意:在计算机界,K = 210 = 1024 M = 220, G = 230, T = 240。
千比每秒,即 kb/s (103 b/s) 兆比每秒,即 Mb/s(106 b/s) 吉比每秒,即 Gb/s(109 b/s) 太比每秒,即 Tb/s(1012 b/s) 请注意:在计算机界,K = 210 = 1024 M = 220, G = 230, T = 240。

53 数字信号流随时间的变化 在时间轴上信号的宽度随带宽的增大而变窄。 带宽为 1 Mb/s 带宽为 4 Mb/s 1 s 时间
每秒 106 个比特 时间 1 s 带宽为 1 Mb/s 时间 每秒 4  106 个比特 0.25 s 带宽为 4 Mb/s

54 3. 吞吐量 吞吐量(throughput)表示在单位时间内通过某个网络(或信道、接口)的数据量。
吞吐量更经常地用于对现实世界中的网络的一种测量,以便知道实际上到底有多少数据量能够通过网络。 吞吐量受网络的带宽或网络的额定速率的限制。

55 4. 时延(delay 或 latency) (1)发送时延: 发送数据时,数据块从结点进入到传输媒体所需要的时间。
也就是从发送数据帧的第一个比特算起,到该帧的最后一个比特发送完毕所需的时间。 发送时延 = 数据块长度(比特) 信道带宽(比特/秒)

56 时延(delay 或 latency) (2)传播时延 电磁波在信道中需要传播一定的距离而花费的时间。 信道长度(米) 传播时延 =
(2)传播时延 电磁波在信道中需要传播一定的距离而花费的时间。 传播时延 = 信道长度(米) 信号在信道上的传播速率(米/秒)

57 时延(delay 或 latency) (3)处理时延 交换结点为存储转发而进行一些必要的处理所花费的时间。
(3)处理时延 交换结点为存储转发而进行一些必要的处理所花费的时间。 (4)排队时延 结点缓存队列中分组排队所经历的时延。 排队时延的长短往往取决于网络中当时的通信量。

58 总时延 数据经历的总时延就是发送时延、传播时延、处理时延和排队时延之和: 总时延 = 发送时延+传播时延+处理时延+处理时延

59 四种时延所产生的地方 从结点 A 向结点 B 发送数据 在结点 A 中产生 处理时延和排队时延 在链路上产生 传播时延 在发送器产生传输时延
(即发送时延) 数据 队列 链路 结点 A 发送器 结点 B

60 容易产生的错误概念 对于高速网络链路,我们提高的仅仅是数据的发送速率而不是比特在链路上的传播速率。 提高链路带宽减小了数据的发送时延。

61 5. 时延带宽积 时延带宽积 (传播)时延 带宽 链路 时延带宽积 = 传播时延  带宽 链路的时延带宽积又称为以比特为单位的链路长度。

62 6、往返时间RTT 往返时间表示从发送方发送数据开始,到发送方收到接收方的确认为止,总共经历的时间。

63 7. 利用率(有信道利用率和网络利用率两种) 信道利用率指出某信道有百分之几的时间是被利用的(有数据通过)。完全空闲的信道的利用率是零。
网络利用率则是全网络的信道利用率的加权平均值。 信道利用率并非越高越好。

64 8、时延与网络利用率的关系 根据排队论的理论,当某信道的利用率增大时,该信道引起的时延也就迅速增加。
若令 D0 表示网络空闲时的时延,D 表示网络当前的时延,则在适当的假定条件下,可以用下面的简单公式表示 D 和 D0之间的关系: U 是网络的利用率,数值在 0 到 1 之间。

65 时延 D 时延 急剧 增大 D0 利用率 U 1

66 计算机网络的非性能特征 费用 质量 标准化 可靠性 可扩展性和可升级性 易于管理和维护

67 1.7 计算机网络的体系结构 1.7.1 计算机网络体系结构的形成
1.7 计算机网络的体系结构 计算机网络体系结构的形成 计算机网络是一个非常复杂的系统,要做到有条不紊的交换数据,每个节点必须要遵守事先约定的规则才能高度协调的工作,这些规则、标准和约定就称为协议。1974年美国IBM公司首先公布了世界上第一个网络体系结构(SNA,System network architecture).凡是遵循SNA的网络设备都可以方便的互联。之后许多公司也纷纷建立了自己的网络体系结构。 为了统一这些标准,国际标准化组织提出了OSI/RM标准。

68 关于开放系统互连参考模型 OSI/RM 只要遵循 OSI 标准,一个系统就可以和位于世界上任何地方的、也遵循这同一标准的其他任何系统进行通信。 在市场化方面 OSI 却失败了。 OSI 的专家们在完成 OSI 标准时没有商业驱动力; OSI 的协议实现起来过分复杂,且运行效率很低; OSI 标准的制定周期太长,因而使得按 OSI 标准生产的设备无法及时进入市场; OSI 的层次划分并也不太合理,有些功能在多个层次中重复出现。

69 两种国际标准 法律上的(de jure)国际标准 OSI 并没有得到市场的认可。 是非国际标准 TCP/IP 现在获得了最广泛的应用。
TCP/IP 常被称为事实上的(de facto) 国际标准。

70 1.7.2 协议与划分层次 1、协议: (1)定义: 计算机网络中的数据交换必须遵守事先约定好的规则。
协议与划分层次 1、协议: (1)定义: 计算机网络中的数据交换必须遵守事先约定好的规则。 这些规则明确规定了所交换的数据的格式以及有关的同步问题(同步含有时序的意思)。 网络协议(network protocol),简称为协议,是为进行网络中的数据交换而建立的规则、标准或约定。

71 (2)网络协议的组成要素: 语法 数据与控制信息的结构或格式 。 语义 需要发出何种控制信息,完成何种动作以及做出何种响应。 同步 事件实现顺序的详细说明。

72 2、分层 (1)分层的必要性 (2)划分层次的概念举例:
“分层”可将庞大而复杂的问题,转化为若干较小的局部问题,而这些较小的局部问题就比较易于研究和处理。 (2)划分层次的概念举例: 主机 1 向主机 2 通过网络发送文件。 可以将要做的工作进行如下的划分。 第一类工作与传送文件直接有关。 确信对方已做好接收和存储文件的准备。 双方协调好一致的文件格式。 两个主机将文件传送模块作为最高的一层 。剩下的工作由下面的模块负责。

73 两个主机交换文件 只看这两个文件传送模块 好像文件及文件传送命令 是按照水平方向的虚线传送的 主机 1 主机 2 文件传送模块 文件传送模块
把文件交给下层模块 进行发送 把收到的文件交给 上层模块

74 再设计一个通信服务模块 主机 1 主机 2 只看这两个通信服务模块 好像可直接把文件 可靠地传送到对方 文件传送模块 文件传送模块
把文件交给下层模块 进行发送 把收到的文件交给 上层模块

75 例如,规定传输的帧格式,帧的最大长度等。
再设计一个网络接入模块 主机 1 主机 2 文件传送模块 文件传送模块 通信服务模块 通信服务模块 网络 接口 网络 接口 网络接入模块 通信网络 网络接入模块 网络接入模块负责做与网络接口细节有关的工作 例如,规定传输的帧格式,帧的最大长度等。

76 (3)分层的好处 各层之间是独立的。 灵活性好。 结构上可分割开。 易于实现和维护。 能促进标准化工作。

77 (4)层数多少要适当 若层数太少,就会使每一层的协议太复杂。 层数太多又会在描述和综合各层功能的系统工程任务时遇到较多的困难。

78 3、计算机网络的体系结构的定义 计算机网络的体系结构(architecture)是计算机网络的各层及其协议的集合。
体系结构就是这个计算机网络及其部件所应完成的功能的精确定义。 实现(implementation)是遵循这种体系结构的前提下用何种硬件或软件完成这些功能的问题。 体系结构是抽象的,而实现则是具体的,是真正在运行的计算机硬件和软件。

79 1.7.3 具有五层协议的体系结构 TCP/IP 是四层的体系结构:应用层、运输层、网际层和网络接口层。
具有五层协议的体系结构 TCP/IP 是四层的体系结构:应用层、运输层、网际层和网络接口层。 但最下面的网络接口层并没有具体内容。 因此在学习计算机网络的原理时往往采取折中的办法,即综合 OSI 和 TCP/IP 的优点,采用一种只有五层协议的体系结构 。

80 五层协议的体系结构 应用层(application layer) 运输层(transport layer)
网络层(network layer) 数据链路层(data link layer) 物理层(physical layer) 应用层 运输层 网络层 2 数据链路层 数据链路层 物理层

81 主机 1 向主机 2 发送数据 应用进程数据先传送到应用层 加上应用层首部,成为应用层 PDU 主机 1 主机 2 AP1 AP2 5 5
4 4 3 3 2 2 1 1

82 主机 1 向主机 2 发送数据 应用层 PDU 再传送到运输层 加上运输层首部,成为运输层报文 主机 1 主机 2 AP1 AP2 5 5
4 加上运输层首部,成为运输层报文 4 3 3 2 2 1 1

83 主机 1 向主机 2 发送数据 运输层报文再传送到网络层 加上网络层首部,成为 IP 数据报(或分组) 主机 1 主机 2 AP1 AP2
5 5 4 运输层报文再传送到网络层 4 3 加上网络层首部,成为 IP 数据报(或分组) 3 2 2 1 1

84 主机 1 向主机 2 发送数据 IP 数据报再传送到数据链路层 加上链路层首部和尾部,成为数据链路层帧 主机 1 主机 2 AP1 AP2
5 5 4 4 3 IP 数据报再传送到数据链路层 3 2 加上链路层首部和尾部,成为数据链路层帧 2 1 1

85 主机 1 向主机 2 发送数据 数据链路层帧再传送到物理层 最下面的物理层把比特流传送到物理媒体 主机 1 主机 2 AP1 AP2 5 5
4 4 3 3 数据链路层帧再传送到物理层 2 2 1 最下面的物理层把比特流传送到物理媒体 1

86 主机 1 向主机 2 发送数据 应用层(application layer) 电信号(或光信号)在物理媒体中传播
5 5 4 4 3 3 2 2 电信号(或光信号)在物理媒体中传播 从发送端物理层传送到接收端物理层 1 1 应用层(application layer) 物理传输媒体

87 主机 1 向主机 2 发送数据 物理层接收到比特流,上交给数据链路层 主机 1 主机 2 AP1 AP2 5 5 4 4 3 3 2 2 1

88 主机 1 向主机 2 发送数据 数据链路层剥去帧首部和帧尾部 取出数据部分,上交给网络层 主机 1 主机 2 AP2 AP1 5 5 4 4
3 3 数据链路层剥去帧首部和帧尾部 取出数据部分,上交给网络层 2 2 1 1

89 主机 1 向主机 2 发送数据 网络层剥去首部,取出数据部分 上交给运输层 主机 1 主机 2 AP1 AP2 5 5 4 4 3 3 2

90 主机 1 向主机 2 发送数据 运输层剥去首部,取出数据部分 上交给应用层 主机 1 主机 2 AP1 AP2 5 5 4 4 3 3 2

91 主机 1 向主机 2 发送数据 应用层剥去首部,取出应用程序数据 上交给应用进程 主机 1 主机 2 AP1 AP2 5 5 4 4 3 3

92 主机 1 向主机 2 发送数据 我收到了 AP1 发来的 应用程序数据! 主机 1 主机 2 AP2 AP1 5 5 4 4 3 3 2 2

93 主机 1 向主机 2 发送数据 注意观察加入或剥去首部(尾部)的层次 主机 1 主机 2 AP1 应用层首部 AP2 应 用 程 序 数 据
H5 AP2 应 用 程 序 数 据 H4 运输层首部 5 5 应 用 程 序 数 据 H3 网络层首部 4 H5 应 用 程 序 数 据 4 H2 链路层 首部 T2 链路层 尾部 3 H4 H5 应 用 程 序 数 据 3 2 2 H3 H4 H5 应 用 程 序 数 据 1 1 比 特 流

94 主机 1 向主机 2 发送数据 计算机 2 的物理层收到比特流后 交给数据链路层 主机 1 主机 2 AP1 AP2 5 5 4 4 3 3
H2 T2 H3 H4 H5 应 用 程 序 数 据 1 1 比 特 流

95 主机 1 向主机 2 发送数据 数据链路层剥去帧首部和帧尾部后 把帧的数据部分交给网络层 主机 1 主机 2 AP1 AP2 5 5 4 4
3 H3 H4 H5 应 用 程 序 数 据 3 2 2 H2 H3 H4 H5 应 用 程 序 数 据 T2 1 1

96 主机 1 向主机 2 发送数据 网络层剥去分组首部后 把分组的数据部分交给运输层 主机 1 主机 2 AP1 AP2 5 5
H4 H5 应 用 程 序 数 据 4 4 3 H3 H4 H5 应 用 程 序 数 据 3 2 2 1 1

97 主机 1 向主机 2 发送数据 运输层剥去报文首部后 把报文的数据部分交给应用层 主机 1 主机 2 AP1 AP2 5
H5 应 用 程 序 数 据 5 H4 H5 应 用 程 序 数 据 4 4 3 3 2 2 1 1

98 主机 1 向主机 2 发送数据 应用层剥去应用层 PDU 首部后 把应用程序数据交给应用进程 主机 1 主机 2 AP1
应 用 程 序 数 据 AP2 5 H5 应 用 程 序 数 据 5 应用层剥去应用层 PDU 首部后 把应用程序数据交给应用进程 4 4 3 3 2 2 1 1

99 主机 1 向主机 2 发送数据 我收到了 AP1 发来的 应用程序数据! 主机 1 主机 2 AP1 AP2 5 5 4 4 3 3 2 2

100 1.7.4 实体、协议、服务 和服务访问点 实体(entity) 表示任何可发送或接收信息的硬件或软件进程。
实体、协议、服务 和服务访问点 实体(entity) 表示任何可发送或接收信息的硬件或软件进程。 协议是控制两个对等实体进行通信的规则的集合。 在协议的控制下,两个对等实体间的通信使得本层能够向上一层提供服务。 要实现本层协议,还需要使用下层所提供的服务。

101 实体、协议、服务 和服务访问点(续) 协议是“水平的”,即协议是控制对等实体之间通信的规则。
服务是“垂直的”,即服务是由下层向上层通过层间接口提供的。 同一系统相邻两层的实体进行交互的地方,称为服务访问点 SAP (Service Access Point)。

102 实体、协议、服务 和服务访问点(续) 服务用户 协议(n + 1) 第 n + 1 层 交换原语 交换原语 第 n 层 服务提供者
SAP SAP 第 n 层 服务提供者 实体(n) 协议(n) 实体(n)

103 著名的协议举例 【例1-1】 占据东、西两个山顶的蓝军1和蓝军2与驻扎在山谷的白军作战。其力量对比是:单独的蓝军1或蓝军2打不过白军,但蓝军1和蓝军2协同作战则可战胜白军。现蓝军1拟于次日正午向白军发起攻击。于是用计算机发送电文给蓝军2。但通信线路很不好,电文出错或丢失的可能性较大(没有电话可使用)。因此要求收到电文的友军必须送回一个确认电文。但此确认电文也可能出错或丢失。试问能否设计出一种协议使得蓝军1和蓝军2能够实现协同作战因而一定(即100 %而不是99.999…%)取得胜利?

104 明日正午进攻,如何? 同意 收到“同意” 这样的协议无法实现! 收到:收到“同意”

105 结论 这样无限循环下去,两边的蓝军都始终无法确定自己最后发出的电文对方是否已经收到。 没有一种协议能够蓝军能 100% 获胜。
这个例子告诉我们,看似非常简单的协议,设计起来要考虑的问题还是比较多的。

106 1.7.5 TCP/IP的体系结构 路由器在转发分组时最高只用到网络层 而没有使用运输层和应用层。 主机A 主机B 4 3 2 1 应用层
网际层 网络 接口层 应用层 运输层 网际层 网络 接口层 路由器 网际层 网络 接口层 网络 1 网络 2 路由器在转发分组时最高只用到网络层 而没有使用运输层和应用层。

107 沙漏计时器形状的 TCP/IP协议族 IP协议族 … … 应用层 HTTP SMTP DNS RTP 运输层 TCP UDP 网际层 IP
网络接口层 网络接口 1 网络接口 2 网络接口 3

108 【例1-2】客户进程和服务器进程 使用 TCP/IP 协议进行通信
应用层 应用层 ① 客户发起连接建立请求 客户 服务器 ② 服务器接受连接建立请求 运输层 运输层 以后就逐级使用下层 提供的服务 (使用 TCP 和 IP) 网络层 网络层 数据链路层 数据链路层 物理层 物理层 因特网

109 功能较强的计算机 可同时运行多个服务器进程
数据链路层 物理层 运输层 网络层 应用层 计算机 1 客户 1 计算机 2 客户 2 计算机 3 应用层 服务器 1 服务器 2 运输层 网络层 数据链路层 物理层 因特网

110 结束


Download ppt "1.1 计算机网络在信息时代的作用 1、关于计算机网络"

Similar presentations


Ads by Google