Download presentation
Presentation is loading. Please wait.
1
2.2 放射衰變與放射性同位素的應用 1 2 3 甚麼把地心加熱了? 衰變三式 進度評估 2 放射衰變的特性 進度評估 3 進度評估 4
2.2 放射衰變與放射性同位素的應用 甚麼把地心加熱了? 衰變三式 進度評估 2 放射衰變的特性 進度評估 3 進度評估 4 放射性同位素的應用 進度評估 5 1 2 3 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
2
在地球的深處,温度非常高(~ 攝氏幾千度)。 部分能量或許來自地核的放射性核素。
甚麼把地心加熱了? 在地球的深處,温度非常高(~ 攝氏幾千度)。 部分能量或許來自地核的放射性核素。 為甚麼這些核素可以保持地核灼熱? 放射性同位素釋放能量,加熱地核。 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
3
2.2 放射衰變與放射性同位素的應用 放射性核素是不穩定的 放出核輻射 放射衰變/蛻變 放射衰變的過程中會釋放能量。
2.2 放射衰變與放射性同位素的應用 放射性核素是不穩定的 放出核輻射 放射衰變/蛻變 放射衰變的過程中會釋放能量。 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
4
在衰變過程中,一種元素的原子核可能會變成另一種元素的原子核。 母核︰衰變前的原子核 子核︰衰變後的原子核
1 衰變三式 在衰變過程中,一種元素的原子核可能會變成另一種元素的原子核。 母核︰衰變前的原子核 子核︰衰變後的原子核 衰變產物︰子核與衰變過程中放射出來的粒子 嬗變︰改變核素成分的核反應 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
5
1 衰變三式 a 衰變 粒子是氦的原子核 He (由兩個質子和兩個中子組成) 鈾-238的原子核放射出一個 粒子
1 衰變三式 a 衰變 粒子是氦的原子核 He (由兩個質子和兩個中子組成) 鈾-238的原子核放射出一個 粒子 4 2 質子數和中子數都減少 2 質量數 = 238 – 4 = 234;原子序數 = 92 – 2 = 90 釷-234的原子核 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
6
核素出現 衰變後,會變成另一個核素:子核的 原子序數比母核少 2,而質量數則比母核少 4。
a 衰變 以上衰變過程可以用下面的方程式表示: U Th + He 238 92 234 90 4 2 核素出現 衰變後,會變成另一個核素:子核的 原子序數比母核少 2,而質量數則比母核少 4。 X Y + He A Z A – 4 Z – 2 4 2 模擬程式 2.2 放射衰變 例題 2 鐳-226的 衰變 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
7
例題 2 鐳-226(原子序數 88)衰變時放射 粒子。 試寫出衰變的方程式。 設 為子核。這個 衰變的方程式可以寫成: X
鐳-226的 衰變 鐳-226(原子序數 88)衰變時放射 粒子。 試寫出衰變的方程式。 設 為子核。這個 衰變的方程式可以寫成: X A Z Ra X + He 226 88 A Z 4 2 考慮質量數和原子序數。 226 = A + 4 及 88 = Z + 2 A = 222 及 Z = 86 X 是氡-222。 ∴ 衰變方程式︰ Ra Rn + He 226 88 222 86 4 2 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
8
1 衰變三式 b 衰變 粒子是電子 e(相比質子或中子, 粒子的質量 小得可以忽略)
1 衰變三式 b 衰變 粒子是電子 e(相比質子或中子, 粒子的質量 小得可以忽略) –1 釷-234的原子核內,一個中子蛻變成一個質子和一個電子。 質子繼續留在核中,而電子則放射出來。 質量數不變;原子序數 = = 91 鏷-234的原子核 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
9
核素出現 衰變後,會變成另一個核素:子核 的原子序數比母核多 1,而質量數則維持不變。 X Y + e
b 衰變 以上衰變過程可以用下面的方程式表示: Th Pa + e 234 90 91 –1 核素出現 衰變後,會變成另一個核素:子核 的原子序數比母核多 1,而質量數則維持不變。 X Y + e A Z Z + 1 –1 例題 3 找出 衰變的母核 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
10
例題 3 原子核 X 衰變,放射 粒子,成為鈾-234(原子序數 92)。試寫下衰變的方程式。 設 X 為母核。
找出 衰變的母核 原子核 X 衰變,放射 粒子,成為鈾-234(原子序數 92)。試寫下衰變的方程式。 A Z 設 X 為母核。 衰變的方程式︰ X U + e A Z 234 92 –1 考慮質量數和原子序數。 A = = 及 Z = 92 + (–1) = 91 X 是鏷-234。 234 91 92 –1 ∴ 衰變方程︰ Pa U + e 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
11
1 衰變三式 c 輻射 有些原子核在放出 或 粒子後,仍會比正常狀態具有較多能量。 不穩定
1 衰變三式 c 輻射 有些原子核在放出 或 粒子後,仍會比正常狀態具有較多能量。 不穩定 這些多餘的能量會以伽瑪射線的形式釋放出去,以穩定原子核。 輻射 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
12
以上過程可以用下面的方程式表示: c 輻射 Co* Co + (* 表示原子核比正常狀態具有較多能量)
60 27 (* 表示原子核比正常狀態具有較多能量) 核素放射 輻射後,原子序數和質量數都 維持不變。 X * X + A Z 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
13
1 衰變三式 d 衰變系 鈾-238發生 衰變 蛻變成釷-234,但仍具放射性 發生 衰變 蛻變成鏷-234 ……
1 衰變三式 d 衰變系 鈾-238發生 衰變 蛻變成釷-234,但仍具放射性 發生 衰變 蛻變成鏷-234 …… 衰變的過程繼續下去,直到蛻變成穩定的鉛-206 為止。 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
14
d 衰變系 以上衰變系可以寫成: U Th Pa U … Pb 用圖表來表示這衰變系︰ 238 92 234
90 91 206 82 用圖表來表示這衰變系︰ 例題 4 釷-232的衰變系 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
15
例題 4 釷-232的衰變系︰ Th Ra Ac Th … (a) 在以上方程式所示的衰變系中,每一次衰變放射出甚麼粒子?
90 228 88 89 (a) 在以上方程式所示的衰變系中,每一次衰變放射出甚麼粒子? Th Ra Ac Th … 232 90 228 88 89 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
16
例題 4 (b) 依照這個衰變系,釷-232最終會變成鉛-208 ( Pb) 這種穩定的核素。整個系列一共放射出多少 和 粒子?
釷-232的衰變系 (b) 依照這個衰變系,釷-232最終會變成鉛-208 ( Pb) 這種穩定的核素。整個系列一共放射出多少 和 粒子? 208 82 放射出 粒子的數量 = 質量數的改變 粒子的質量數 = 232 – 208 4 = 6 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
17
例題 4 設整個系列一共放射出 y 個 粒子。 衰變方程式可以寫成: Th Pb + 6 He + y e 考慮原子序數。
釷-232的衰變系 設整個系列一共放射出 y 個 粒子。 衰變方程式可以寫成: Th Pb He + y e 232 90 208 82 4 2 –1 考慮原子序數。 90 = 2 + y (–1) y = 4 整個系列共放射出 4 個 粒子。 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
18
原子核 X 衰變,放射出一粒 粒子後成為 Rn。下列哪一個是母核?
進度評估 2 – Q1 原子核 X 衰變,放射出一粒 粒子後成為 Rn。下列哪一個是母核? 222 86 222 86 A Rn B Th C Ra D Th 224 90 226 88 226 90 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
19
寫出表示鐳-228(原子序數 88)發生 衰變的方 程式。
進度評估 2 – Q2 寫出表示鐳-228(原子序數 88)發生 衰變的方 程式。 衰變發生後, 質量數不變 原子序數增加 1 ∴ Ra Ac + e 228 88 89 –1 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
20
(a) 在方程式顯示的首四次衰變中,放射出哪些粒 子?在對應的箭嘴上寫上答案。
進度評估 2 – Q3 鈾-238的衰變系︰ U Th Pa U Th … Pb 238 92 234 90 91 230 206 82 (a) 在方程式顯示的首四次衰變中,放射出哪些粒 子?在對應的箭嘴上寫上答案。 (b) 整個系列共放射出多少個 和 粒子? = 8 8 個 粒子 238 – 206 4 2 – 92 = 6 6 個 粒子 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
21
我們可以用擲骰類比來模擬衰變過程,並研究它的特性。
2 放射衰變的特性 放射衰變有很多不同的特性。 我們可以用擲骰類比來模擬衰變過程,並研究它的特性。 實驗 2a 放射衰變──擲骰類比 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
22
實驗 2a 把 100 粒骰子放在一個盒子裏。 擲骰子,然後拿走擲得「1」的。 記錄拿走的和餘下的骰子數目。 放射衰變──擲骰類比
第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
23
用餘下的骰子重複步驟 2,直到盒中只餘下幾粒骰子為止。 繪畫餘下的骰子數目與投擲次數的關係線圖。
實驗 2a 放射衰變──擲骰類比 用餘下的骰子重複步驟 2,直到盒中只餘下幾粒骰子為止。 繪畫餘下的骰子數目與投擲次數的關係線圖。 錄像片段 2.2 實驗 2a - 放射衰變──擲骰類比 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
24
畫出餘下骰子數目隨擲骰次數變化的線圖,便得到骰子的「衰變」曲線。
2 放射衰變的特性 在擲骰類比實驗中,骰子代表放射核。 擲得「1」的骰子在每一擲之後都會被拿走。 代表「衰變」了的放射核 畫出餘下骰子數目隨擲骰次數變化的線圖,便得到骰子的「衰變」曲線。 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
25
2 放射衰變的特性 擲骰實驗的典型結果︰ 擲骰次數 1 2 3 4 5 6 7 8 9 10 拿走骰子數目 11 18 17 餘下骰子數目
2 放射衰變的特性 擲骰實驗的典型結果︰ 擲骰次數 1 2 3 4 5 6 7 8 9 10 拿走骰子數目 11 18 17 餘下骰子數目 100 89 71 54 46 37 28 24 20 16 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
26
放射源的衰變曲線也是 類似的。衰變曲線顯示 還未衰變的放射核數目 怎樣隨時間改變。
2 放射衰變的特性 對應的「衰變」曲線︰ 放射源的衰變曲線也是 類似的。衰變曲線顯示 還未衰變的放射核數目 怎樣隨時間改變。 擲骰類比及從這類比得出的「衰變」曲線顯示 了放射衰變的幾個特點。 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
27
2 放射衰變的特性 a 隨 機 我們不能預測擲骰時哪粒骰子會被拿走。 重複實驗 不同結果 ∵ 擲骰過程是隨機的 放射性衰變也是隨機過程
2 放射衰變的特性 a 隨 機 我們不能預測擲骰時哪粒骰子會被拿走。 重複實驗 不同結果 ∵ 擲骰過程是隨機的 放射性衰變也是隨機過程 ∵ 某一個放射核在某一刻會不會衰變是隨機的 放射衰變是隨機的。 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
28
2 放射衰變的特性 b 衰變率 在擲骰類比實驗中, 餘下骰子的數目 發生「衰變」的骰子數目 在放射性衰變中,
2 放射衰變的特性 b 衰變率 在擲骰類比實驗中, 餘下骰子的數目 發生「衰變」的骰子數目 在放射性衰變中, 每秒鐘衰變的放射核數目(衰變率)與未衰變的放射核數目成正比 衰變率︰放射源的放射強度 單位︰每秒鐘的蛻變次數 (s–1) 或貝克 (Bq) 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
29
數學上,放射強度 A 與未衰變的放射核數目 N 之間的關係是:
b 衰變率 數學上,放射強度 A 與未衰變的放射核數目 N 之間的關係是: A = kN k︰衰變常數,單位是 s–1 (數值取決於放射性核素的種類) 衰變常數是在每單位時間內衰變的概率。 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
30
2 放射衰變的特性 c 半衰期 投擲骰子的「衰變」曲線︰ 「未衰變」的骰子數目︰ 從 100 減至 50 約為 3.6 次投擲
2 放射衰變的特性 c 半衰期 投擲骰子的「衰變」曲線︰ 「未衰變」的骰子數目︰ 從 100 減至 50 約為 3.6 次投擲 從 50 減至 25 要使一半「未衰變」的骰子「衰變」,所需的「時間」為 3.6 次投擲 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
31
核衰變中,每過一段特定時間,未衰變的放射核數目就減少一半。 半衰期
c 半衰期 核衰變中,每過一段特定時間,未衰變的放射核數目就減少一半。 半衰期 1 2 t 以鐳-226的衰變為例︰ 4 千萬個 時間 1620 年 1 個半衰期 3240 年 2 個半衰期 4860 年 3 個半衰期 2 千萬個 2 千萬個 1 千萬個 3 千萬個 5 百萬個 3 千 5 百萬個 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
32
放射性核素的半衰期是該核素的樣本有一半原子核衰變所需的時間,也相等於它的放射強度減半所需的時間。
c 半衰期 樣本的放射強度 未衰變原子核的數目 一半的原子核衰變 樣本的放射強度減半 半衰期 放射性核素的半衰期是該核素的樣本有一半原子核衰變所需的時間,也相等於它的放射強度減半所需的時間。 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
33
c 半衰期 不同放射性核素的半衰期︰ 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
34
放射性核素的半衰期是很有用的資料,因為︰ 可用來計算核素的放射性和危險性維持多久
c 半衰期 放射性核素的半衰期是很有用的資料,因為︰ 可用來計算核素的放射性和危險性維持多久 可用來識別不明放射性核素的種類 (∵ 每種核素都有獨特的半衰期) 模擬程式 2.3 放射衰變及半衰期 例題 5 放射性樣本的半衰期 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
35
用蓋革—彌勒計數器來量度某放射性樣本在一段時間內的放射強度。 它的衰變曲線︰
例題 5 放射性樣本的半衰期 用蓋革—彌勒計數器來量度某放射性樣本在一段時間內的放射強度。 它的衰變曲線︰ 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
36
例題 5 (a) 為甚麼在一段時間後該線圖趨於水平,而不是 下跌至零?
放射性樣本的半衰期 (a) 為甚麼在一段時間後該線圖趨於水平,而不是 下跌至零? 在那個時段,樣本的放射強度差不多下跌至零。 蓋革—彌勒計數器所探測到的是本底輻射。 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
37
例題 5 (b) 由線圖估計放射性樣本的半衰期。 從上圖得知,本底幅射的放射強度 = 30 次/分鐘 樣本的初始放射強度
380 30 (b) 由線圖估計放射性樣本的半衰期。 從上圖得知,本底幅射的放射強度 = 30 次/分鐘 樣本的初始放射強度 = 380 – 30 = 350 次/分鐘 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
38
例題 5 ∴ 半衰期約為 1 小時。 預計在一個半衰期後的計數率 = 初始放射強度的一半 + 本底幅射 = + 30 = 205 次/分鐘
放射性樣本的半衰期 預計在一個半衰期後的計數率 = 初始放射強度的一半 + 本底幅射 = 350 2 + 30 = 205 次/分鐘 ∴ 半衰期約為 1 小時。 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
39
c 半衰期 例題 6 鈉-24的放射強度 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
40
例題 6 鈉-24的半衰期為 15 小時。一個鈉-24樣本的放射強度是 800 Bq,2.5 天後,它的放射強度是多少?
鈉-24的放射強度 鈉-24的半衰期為 15 小時。一個鈉-24樣本的放射強度是 800 Bq,2.5 天後,它的放射強度是多少? 2.5 天 = 60 小時 = 4 15 小時 (= 4 個半衰期) 800 Bq Bq Bq Bq Bq 15 小時 2.5 天後,樣本的強度減弱至 50 Bq 另解︰ = 800 1 2 4 2.5 天後的放射強度 = 50 Bq 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
41
下圖為一個放射源的衰變曲線。本底輻射是多少?
進度評估 3 – Q1 下圖為一個放射源的衰變曲線。本底輻射是多少? A 20 Bq B 30 Bq C 50 Bq D 80 Bq 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
42
下圖為一個放射源的衰變曲線。估計放射源的半衰期。
進度評估 3 – Q2 下圖為一個放射源的衰變曲線。估計放射源的半衰期。 A 2 分鐘 B 3.5 分鐘 C 4.5 分鐘 D 6 分鐘 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
43
下圖為一個放射源的衰變曲線。為甚麼數據不是落在 曲線上?
進度評估 3 – Q3 下圖為一個放射源的衰變曲線。為甚麼數據不是落在 曲線上? A 量度輻射的誤差很大。 B 放射源的衰變是隨機的。 C 量度放射強度的次數不夠多。 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
44
碘-131的半衰期是 8 天。現有 16 g 的碘樣本,24 天 後有多少碘會衰變掉?
進度評估 3 – Q4 碘-131的半衰期是 8 天。現有 16 g 的碘樣本,24 天 後有多少碘會衰變掉? 8 12 14 8 4 2 所以,24 天後有 ______ 的碘衰變掉。 14 g 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
45
某放射源的放射強度 = 600 Bq(已修正本底輻射) 40 小時後,放射強度跌至 150 Bq。 該放射源的半衰期 = ?
設 n 為放射源所經過的半衰期數目。 = 150 600 1 2 n n = 2 半衰期 = 40 2 = 20 小時 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
46
2 放射衰變的特性 衰變曲線可以用指數式衰變函數來表示: N = N0 e–kt N0︰未衰變原子核的初始數目 k︰衰變常數 t︰時間
2 放射衰變的特性 d 指數式衰變 衰變曲線可以用指數式衰變函數來表示: N = N0 e–kt N0︰未衰變原子核的初始數目 k︰衰變常數 t︰時間 N︰未衰變原子核在時間 t 的數目 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
47
半衰期 與衰變常數 k 的關係︰ t ln 2 k t = ∵ 放射強度 A 未衰變原子核的數目 N ∴ A = A0 e–kt
d 指數式衰變 半衰期 與衰變常數 k 的關係︰ t 1 2 ln 2 k = t 1 2 ∵ 放射強度 A 未衰變原子核的數目 N ∴ A = A0 e–kt A0︰初始放射強度 例題 7 指數式衰變 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
48
例題 7 某放射性樣本的放射強度在一天內由 6 108 Bq 下降至 5.5 108 Bq。 (a) 放射性樣本的衰變常數 = ?
指數式衰變 某放射性樣本的放射強度在一天內由 6 108 Bq 下降至 5.5 108 Bq。 (a) 放射性樣本的衰變常數 = ? = e–kt A A0 根據 A = A0 e–kt, ∴ ln = ln(e–kt ) = –kt A A0 1 t k = – ln A A0 1 24 60 60 = – ln 5.5 108 6 108 = 1.01 10–6 s–1 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
49
例題 7 (b) 樣本的半衰期 = ? 半衰期 ln 2 k = ln 2 1.01 10–6 = = 688 000 s
指數式衰變 (b) 樣本的半衰期 = ? 半衰期 ln 2 k = ln 2 1.01 10–6 = = s ≈ 7.97 天 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
50
例題 7 (c) 樣本的放射強度要多久才會下降至 1 108 Bq? 根據 (a), ln = –kt t = – ln
指數式衰變 (c) 樣本的放射強度要多久才會下降至 1 108 Bq? ln = –kt A A0 根據 (a), 1 k t = – ln A A0 1 1.01 10–6 = – ln 1 108 6 108 = s ≈ 20.5 天 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
51
(b) 如果樣本的放射強度為 3 105 Bq,一天後它的放射強度 = ?
放射性樣本的衰變常數是 1.28 10–5 s–1。 (a) 試找出樣本的半衰期。 ln 2 k t 1 2 = = ln 2 1.28 10–5 = s (b) 如果樣本的放射強度為 3 105 Bq,一天後它的放射強度 = ? A = A0 e–kt = (3 105) e–1.28 10–5 24 3600 = 9.93 104 Bq 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
52
用粒子撞擊某些元素的原子核,便可製造出 人工的放射性同位素(例如︰低速中子)
3 放射性同位素的應用 只有少許天然物質具有放射性。 用粒子撞擊某些元素的原子核,便可製造出 人工的放射性同位素(例如︰低速中子) 人工嬗變 放射性同位素在醫療、考古學、工業和農業等方面都有很多用途。 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
53
3 放射性同位素的應用 醫 療 射線可用來殺死癌細胞。
3 放射性同位素的應用 醫 療 1 放射療法 射線可用來殺死癌細胞。 放射治療儀器以癌變部位為中心 轉動,讓 放射源( 例如銫-137 及鈷-60)放出的 射線集中在癌 變部位,殺死癌細胞。 因為周圍的健康組織比患處所接受的輻射劑量少得多,所受的損害較少。 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
54
3 放射性同位素的應用 醫 療 放射強度低、半衰期短的放射性同位素可作為示踪物注入人體內。
3 放射性同位素的應用 醫 療 2 示踪物 放射強度低、半衰期短的放射性同位素可作為示踪物注入人體內。 例如︰鎝-99( 放射源)會用來做腦掃描的示踪物 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
55
3 放射性同位素的應用 醫 療 醫院以 射線消毒注射器及其他用具。鈷-60可應用於這用途上。 3 消 毒
3 放射性同位素的應用 醫 療 3 消 毒 醫院以 射線消毒注射器及其他用具。鈷-60可應用於這用途上。 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
56
3 放射性同位素的應用 考 古 活着的生物含有固定百分比的碳-12(穩定)和碳-14(帶放射性) 碳-14的半衰期 = 5700 年
3 放射性同位素的應用 考 古 1 碳-14年代測定法 活着的生物含有固定百分比的碳-12(穩定)和碳-14(帶放射性) 碳-14的半衰期 = 5700 年 生物死去後,身體不會再吸收碳-14,但體內的碳-14卻不斷衰變 透過測定古代遺骸內碳-14的放射強度,就可 以找出遺骸的年代 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
57
3 放射性同位素的應用 考 古 放射性年代測定法 透過測定天然放射性同位素(如鈾-238)的放射強度,推斷岩石和化石的年代
3 放射性同位素的應用 考 古 2 地質年代測定法 放射性年代測定法 透過測定天然放射性同位素(如鈾-238)的放射強度,推斷岩石和化石的年代 可用來找出地球生命進化和地質歷史等重要資料 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
58
3 放射性同位素的應用 工 業 厚度計可檢測輪胎帘布或金屬箔等薄片的厚度。 檢測時,薄片會經過 放射源和探測器之間。
3 放射性同位素的應用 工 業 1 厚度計 厚度計可檢測輪胎帘布或金屬箔等薄片的厚度。 檢測時,薄片會經過 放射源和探測器之間。 探測器接收到過多的輻射 所製造的薄片過薄 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
59
3 放射性同位素的應用 工 業 靜電消除裝置 除去機器中的靜電,以免 物件被卡住或紙張被扯破 等情況出現 內有一個 放射源(釙-210)
3 放射性同位素的應用 工 業 2 靜電消除裝置 靜電消除裝置 除去機器中的靜電,以免 物件被卡住或紙張被扯破 等情況出現 內有一個 放射源(釙-210) 把周圍的空氣電離 離子會吸引遊離電子,減少靜電 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
60
3 放射性同位素的應用 工 業 有些煙霧探測器中有一個電離間隔 內有一個 放射源(鎇-241)和兩塊帶電金屬板
3 放射性同位素的應用 工 業 3 煙霧探測器(火警警報) 有些煙霧探測器中有一個電離間隔 內有一個 放射源(鎇-241)和兩塊帶電金屬板 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
61
3 放射性同位素的應用 工 業 輻射把間隔內的空氣電離 離子被吸引到兩塊金屬板上,形成電流
3 放射性同位素的應用 工 業 3 煙霧探測器(火警警報) 輻射把間隔內的空氣電離 離子被吸引到兩塊金屬板上,形成電流 火警發生時,煙霧粒子與離子互相碰撞 阻礙離子運動 電流降低 警鐘響起 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
62
3 放射性同位素的應用 工 業 放出 射線的示踪物可用來探測地下輸油管道和水管是否出現滲漏。
3 放射性同位素的應用 工 業 4 示踪物 放出 射線的示踪物可用來探測地下輸油管道和水管是否出現滲漏。 地面的探測器可探測到從管道滲出的放射性同位素。 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
63
3 放射性同位素的應用 農 業 在肥料中摻入少量磷-30,可追踪植物吸收肥料的情 況,確定農作物所需肥料的分量。 示踪物 厚度計 例題 8
3 放射性同位素的應用 農 業 示踪物 在肥料中摻入少量磷-30,可追踪植物吸收肥料的情 況,確定農作物所需肥料的分量。 例題 8 厚度計 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
64
例題 8 厚度計可用來測定紙張、塑膠 薄膜或金屬箔等物體的厚度。
在一次測試過程中,放射源向 着金屬箔放出 輻射,安裝在 另一側的蓋革—彌勒計數器則接收輻射,以探測金屬箔厚度的變化。如果探測器接收到過少或過多的輻射,滾輪施加於金屬箔上的力便會作出調整,以保持金屬箔的厚度不變。 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
65
例題 8 (a) 蓋革—彌勒計數器的讀數增加,表示金屬箔有甚麼變化? 金屬箔比正常薄。
厚度計 (a) 蓋革—彌勒計數器的讀數增加,表示金屬箔有甚麼變化? 金屬箔比正常薄。 (b) 如果蓋革—彌勒計數器的讀數增加,滾輪施於 金屬箔的力應怎樣調整? 滾輪施於金屬箔的力應調低,令金屬箔厚度 增加。 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
66
例題 8 (c) 為甚麼 (i) 放射源和 (ii) 放射源不適用於 厚度計? (i) 粒子不能穿透金屬箔。
∴ 穿過金屬箔後,計數器的讀數也不會明 顯減低 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
67
進度評估 5 – Q1 把放射性同位素與對應的應用範疇連起來。 輻射種類 半衰期 432.2 年 29.12 年 5700 年
5.27 年 考古學 厚度計 煙霧探測器 放射療法 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
68
完 第 5 冊 單元 2.2 放射衰變與放射性同位素的應用
Similar presentations