Download presentation
Presentation is loading. Please wait.
1
量化研究與統計分析 Data Graphing
第八章 描述統計的原理與應用 Data Graphing 第八章 描述統計 第一章 科學研究與量化方法
2
課程目標 介紹描述統計的原理 瞭解集中量數的特性與各量數 瞭解變異量數的特性與各量數 瞭解相對量數的特性與各量數 瞭解標準分數的特性與各量數
量化研究與統計分析 課程目標 介紹描述統計的原理 瞭解集中量數的特性與各量數 瞭解變異量數的特性與各量數 瞭解相對量數的特性與各量數 瞭解標準分數的特性與各量數 熟習描述統計的SPSS運作 第八章 描述統計 第一章 科學研究與量化方法
3
量化研究與統計分析 統計學的重要性 統計學(statistics)是一門應用數量方法來收集、整理、分析和解釋資料,並由研究樣本的性質推論未知母群體性質,期待在不確定的情況下作決策的科學方法。 第八章 描述統計 第一章 科學研究與量化方法
4
統計學的分類 1.描述(敘述)統計學(descriptive statistics)
量化研究與統計分析 統計學的分類 --依內容性質分 1.描述(敘述)統計學(descriptive statistics) 2.推論統計學(inferential statistics) 3.實驗設計(design of experiments) 第八章 描述統計 第一章 科學研究與量化方法
5
請於1分鐘內算出本題答案 **** 禁止使用計算機 **** 1 = 5 2 = 25 3 = 125 4 = 625 5 = ?
量化研究與統計分析 請於1分鐘內算出本題答案 **** 禁止使用計算機 **** 1 = 5 2 = 25 3 = 125 4 = 625 5 = ? 數學答案: 3125 邏輯答案: ??? 第八章 描述統計 第一章 科學研究與量化方法
6
量化研究與統計分析 實驗設計 透過實驗操弄自變項、觀察依變項產生的變化,以瞭解兩者之因果關係。 第八章 描述統計 第一章 科學研究與量化方法
7
描述統計 描述統計的定義 一套用以整理、描述、解釋資料的系統方法與統計技術
量化研究與統計分析 描述統計 描述統計的定義 一套用以整理、描述、解釋資料的系統方法與統計技術 數據從初始狀態(raw data)成為可被理解的統計量數(statistic)的一套操作程序 透過統計量數來描述大量資料,並作為彼此溝通的共同符號語言 第一節 第八章 描述統計 第一章 科學研究與量化方法
8
集中量數 集中量數(measures of central location) 用以描述一組數據或一個分配集中點的統計量數
量化研究與統計分析 集中量數 集中量數(measures of central location) 用以描述一組數據或一個分配集中點的統計量數 一個能夠描述數據的共同落點的指標。 常用的集中量數有平均數、中位數及眾數 第一節 第八章 描述統計 第一章 科學研究與量化方法
9
量化研究與統計分析 次數分配 次數分配可說是資料分析的基本工具,因為要瞭解資料所表達的意義,首先就必須瞭解資料的結構。次數分配程序正是顯示資料結構的一種工具,它計算出資料的次數、百分比、累計百分比和一些基本統計量,並可顯示其次數分配圖。 第八章 描述統計 第一章 科學研究與量化方法
10
次數分配表 (名義變項) 疾病名稱 次數(f) 百分比(%) 砂眼 30 24 蛀牙 75 60 近視 20 16 合計 125 100
量化研究與統計分析 次數分配表 (名義變項) 疾病名稱 次數(f) 百分比(%) 砂眼 30 24 蛀牙 75 60 近視 20 16 合計 125 100 第八章 描述統計 第一章 科學研究與量化方法
11
次數分配表 (次序變項) 等第 次數(f) 百分比(%) 甲 10 20 乙 24 48 丙 12 丁 4 8 合計 50 100
量化研究與統計分析 次數分配表 (次序變項) 等第 次數(f) 百分比(%) 甲 10 20 乙 24 48 丙 12 丁 4 8 合計 50 100 第八章 描述統計 第一章 科學研究與量化方法
12
量化研究與統計分析 次數分配圖 C941 第八章 描述統計 第一章 科學研究與量化方法
13
量化研究與統計分析 次數分配圖 E941 第八章 描述統計 第一章 科學研究與量化方法
14
平均數 平均數(mean;以M表示) 取某一變項的所有數值的總和除以觀察值個數所得到的值
量化研究與統計分析 平均數 平均數(mean;以M表示) 取某一變項的所有數值的總和除以觀察值個數所得到的值 因為是將數據直接以數學算式來計算平均值,又稱為算術平均數(arithmetic mean)。 母體資料得出的平均數需以希臘字μ表示 樣本 母群體 母群體 第一節 第八章 描述統計 第一章 科學研究與量化方法
15
中位數 中位數(median;或以Mdn表示)
量化研究與統計分析 中位數 中位數(median;或以Mdn表示) 又稱為中數、百分等級為50的百分位數(P50)或第二四分位數(Q2; second quartile)。 將某一個變項的數據依大至小或由小至大排列,取位居最中間、或能夠均勻對分全體觀察值的分數 在中位數之上與之下,各有50%的觀察值。 50、55、60、60、60、65、66、70、90 50、55、60、60、60、65、66、70、90 、95 62.5 第一節 第八章 描述統計 第一章 科學研究與量化方法
16
量化研究與統計分析 中位數 (median ;以Md表示) 在中位數之上與之下,各有50%的觀察值。又稱為中數、第 2 四分位數(Q2; second quartile)、第50百分位數(P50)。 將某一個變項的數據依大至小或由小至大排列,取位居最中間、或能夠均勻對分全體觀察值的分數 N為奇數: N為偶數: 第八章 描述統計 第一章 科學研究與量化方法
17
眾數 眾數(mode;或以Mo表示) 一組分數中,出現次數最多的一個分數
量化研究與統計分析 眾數 眾數(mode;或以Mo表示) 一組分數中,出現次數最多的一個分數 一組數據中最典型(typical)的數值或次數分配最高點所對應的分數 是各集中量數當中,最容易辨認的量數 一個分配有兩個分數具有相同的最高次數,此時即出現了雙眾數,稱為雙峰分配(bimodal distribution) 50、55、60、60、60、65、66、70、90 第一節 第八章 描述統計 第一章 科學研究與量化方法
18
量化研究與統計分析 集中量數的特性與優缺點比較 第一節 第八章 描述統計 第一章 科學研究與量化方法
19
量化研究與統計分析 三種集中量數與分配形狀的關係 第一節 第八章 描述統計 第一章 科學研究與量化方法
20
變異量數 變異量數(measures of variation)或離散量數 用來描述觀察值在某一個變項上的分數分散情形的統計量
量化研究與統計分析 變異量數 變異量數(measures of variation)或離散量數 用來描述觀察值在某一個變項上的分數分散情形的統計量 描述統計中,集中量數必須搭配變異量數,才能反應一組數據的分佈特徵 常用的變異量數包括全距、四分差、變異數及標準差 第二節 第八章 描述統計 第一章 科學研究與量化方法
21
全距 全距(range) 一組分數中最大值(Xmax)與最小值(Xmin)之差 是一群分數變異情形最粗略的指標
量化研究與統計分析 全距 全距(range) 一組分數中最大值(Xmax)與最小值(Xmin)之差 是一群分數變異情形最粗略的指標 全距容易計算,適用性高,可以應用在名義變項與順序變項,來求出變項當中類別的多寡。 缺點是不精確也不穩定,無法反應一個分配的每個數值的狀態。 第二節 第八章 描述統計 第一章 科學研究與量化方法
22
四分差 四分差(semi-interquartile range; QR)
量化研究與統計分析 四分差 四分差(semi-interquartile range; QR) 是一組數據當中的第三四分位數(區隔高分端的前25%的分數,簡稱Q3)與第一四分位數(區隔低分端的後25%的分數,簡稱Q1)距離的一半 中間百分之五十的樣本分數差距的二分之一 第二節 第八章 描述統計 第一章 科學研究與量化方法
23
離均差與平方和 離均差 離均差平方和(sum of squares; SS) 一組數據中,各分數與平均數的距離,通常以小寫的x來表示
量化研究與統計分析 離均差與平方和 離均差 一組數據中,各分數與平均數的距離,通常以小寫的x來表示 當離均差為正值時,表示分數落在平均數的右方 離均差為負值時,表示分數落在平均數的左方 平均數是每一個分數加總後的平均值,為一組分數的重心位置 功用:用以顯示數值在群體中的位置 離均差平方和(sum of squares; SS) SS的概念可以類比為面積的概念,表示分數與平均數變異的面積和 deviation score= x =(X - μ) 第二節 第八章 描述統計 第一章 科學研究與量化方法
24
離均差與平方和 離均差平方和(sum of squares; SS) SS的概念可以類比為面積的概念,表示分數與平均數變異的面積和
量化研究與統計分析 離均差與平方和 離均差平方和(sum of squares; SS) SS的概念可以類比為面積的概念,表示分數與平均數變異的面積和 第二節 第八章 描述統計 第一章 科學研究與量化方法
25
變異數與標準差 變異數(variance) 標準差 平均化的離均差平方和
量化研究與統計分析 變異數與標準差 變異數(variance) 平均化的離均差平方和 標準差 變異數的開方,以σ表示。標準差或變異數越大者,表示該分配的變異情形較大(較分散)。 第二節 第八章 描述統計 第一章 科學研究與量化方法
26
變異數的不偏估計數 標準差與變異數的不偏估計數的主要差別在於分母項為N-1而非原來的N
量化研究與統計分析 變異數的不偏估計數 標準差與變異數的不偏估計數的主要差別在於分母項為N-1而非原來的N N-1稱為自由度(degree of freedom;df),表示一組分數當中,可以自由變動的分數的個數。 在離均差的計算上,自由度為樣本數減1,表示在N個觀察值中,只有N-1個數字可以自由運用於離均差的計算。 第二節 第八章 描述統計 第一章 科學研究與量化方法
27
量化研究與統計分析 變異量數的特性與優缺點比較 第二節 第八章 描述統計 第一章 科學研究與量化方法
28
偏態(Skewness) 描述一個變項的對稱性(symmetry)的量數稱為偏態係數
量化研究與統計分析 偏態(Skewness) 描述一個變項的對稱性(symmetry)的量數稱為偏態係數 不對稱的資料稱為偏態資料,依其方向可分為負偏(negatively skewed)(或左偏,即左側具有偏離值)、正偏(positively skewed)(或右偏,即右側具有偏離值)與對稱(symmetrical)三種情形 第三節 第八章 描述統計 第一章 科學研究與量化方法
29
地板與天花板效應 地板效應(floor effect) 天花板效應(ceiling effect)
量化研究與統計分析 地板與天花板效應 地板效應(floor effect) 指數據多數集中在偏低的一端,但在高分端則有極端值,分數不容易突破低分端,但會往高分端延伸,彷彿有一個地板(或真的存在一個低分限制條件)阻擋了數據往低分移動。 由於地板阻隔作用,地板效應常伴隨正偏態現象。 天花板效應(ceiling effect) 則與負偏態有關,是指數據多數集中在偏高的一端,但在低分端則有極端值,分數不容易突破高分端,彷彿有一個天花板(或真的存在一個高分限制條件)阻擋了數據往高分移動。 第三節 第八章 描述統計 第一章 科學研究與量化方法
30
峰度(Kurtosis) 是指一個次數分配集中部份的陡峭程度。 兩個分配都是對稱的單峰鐘型曲線時,並不一定具有一樣的平坦或陡峭形態(峰度)。
量化研究與統計分析 峰度(Kurtosis) 是指一個次數分配集中部份的陡峭程度。 兩個分配都是對稱的單峰鐘型曲線時,並不一定具有一樣的平坦或陡峭形態(峰度)。 一個對稱的鐘型分配,變項的數值會集中於眾數所在位置,如果集中於眾數附近的分數多,分散於兩側的分數少,將形成高狹峰(leptokurtic)的分配 當集中於眾數附近的分數較少,兩側分數多,則形成低闊峰(platykurtic)。 在常態分配時的理想峰度稱為常態峰(mesokurtic)。 第三節 第八章 描述統計 第一章 科學研究與量化方法
31
相對量數 數據的解讀: 相對量數或相對地位量數(measures of relative position) 絕對意義:由數值大小反應
量化研究與統計分析 相對量數 數據的解讀: 絕對意義:由數值大小反應 相對意義:需從相對比較,甚至於進行變項數據的標準化,才能對於數據的意義進行正確解讀。 相對量數或相對地位量數(measures of relative position) 描述個別觀察值在團體中所在相對位置的統計量 將某特定觀察值在樣本中所處的位置,以其他分數進行參照,計算出觀察值在該變項上分數的團體地位(位置) 常用的相對量數包括百分等級,百分位數,標準分數 第四節 第八章 描述統計 第一章 科學研究與量化方法
32
百分等級與百分位數 百分等級(percentile rank; PR) 百分位數(percentile point; Pp) 兩者的數學關係
量化研究與統計分析 百分等級與百分位數 百分等級(percentile rank; PR) 係指觀察值在變項上的分數在團體中所在的等級 在一百個人中,該分數可以排在第幾個等級。 例如PR=50代表某一個分數在團體中可以勝過50%的人,他的分數也恰好是中位數。 百分位數(percentile point; Pp) 係指在樣本中位居某一個等級的觀察值之分數 若想在一百個人的樣本中贏過多少百分之多少的人,則他的分數必須得到多少分 例如中位數為60分時,表示有50%的人比60分還低,此時我們可以說第50百分位數為60分,以P50=60表示之。 兩者的數學關係 百分等級是將原始分數轉化為等級(百分比) 百分位數則是由某一等級來推算原始分數 第四節 第八章 描述統計 第一章 科學研究與量化方法
33
百分等級與百分位數的計算 樣本數少時 樣本數大時 將資料依序排列,算出累積百分比,即可對應出每一分數的百分等級
量化研究與統計分析 百分等級與百分位數的計算 樣本數少時 將資料依序排列,算出累積百分比,即可對應出每一分數的百分等級 亦可從百分等級推算出各特定百分位數 樣本數大時 百分等級的計算必須以分組資料的方式來整理資料 百分等級的換算,必須以公式來計算之 第四節 第八章 描述統計 第一章 科學研究與量化方法
34
標準分數 標準分數(standard scores) 常用的標準分數
量化研究與統計分析 標準分數 標準分數(standard scores) 利用線性轉換的原理,將一組數據轉換成不具有實質的單位與集中性的標準化分數。 不同的標準分數,其共通點是利用一個線性方程式y=bx+a進行集中點的平移與重新單位化,使得不同量尺與不同變項的測量數據具有相同的單位與相同的集中點,因此得以相互比較。 常用的標準分數 Z分數 T分數(T=10Z+50) SAT考試(Scholastic Assessment Test)(SAT=100Z+500) 比西測驗IQ分數(平均數為100,標準差為16的標準分數)(IQ=16Z+100), 魏氏智力測驗為15Z+100 第五節 第八章 描述統計 第一章 科學研究與量化方法
35
Z分數 定義 Z分數的特性 指原始分數減去其平均數,再除以標準差後所得到的新分數 表示該原始分數是落在平均數以上或以下幾個標準差的位置上
量化研究與統計分析 Z分數 定義 指原始分數減去其平均數,再除以標準差後所得到的新分數 表示該原始分數是落在平均數以上或以下幾個標準差的位置上 Z分數的特性 任何一組數據經過Z公式轉換後,均具有平均數為0,標準差為1的特性 Z分數可以作分配內與跨分配的比較。 Z分數僅是將原始分數進行線性轉換,並未改變各分數的相對關係與距離,因此Z分數轉換並不會改變分配的形狀。 以母體資料為基礎時 以樣本資料為基礎時 第五節 第八章 描述統計 第一章 科學研究與量化方法
36
常態分配 常態分配(normal distribution) 指一個隨機變項的觀察值,呈現對稱的鐘形曲線分配
量化研究與統計分析 常態分配 常態分配(normal distribution) 指一個隨機變項的觀察值,呈現對稱的鐘形曲線分配 由德國數學家Gauss(Karl F. Gauss; )所提出,因此又稱為高斯分配(Gaussian distribution)。 第五節 第八章 描述統計 第一章 科學研究與量化方法
37
常態分配的特性 常態曲線並沒有兩端點極限值 機率分配 反曲點(inflection points) 當x=μ時,函數值f(x)達到最高點
量化研究與統計分析 常態分配的特性 常態曲線並沒有兩端點極限值 當x=μ時,函數值f(x)達到最高點 當x趨近無限大時,函數值f(x)則趨近為0 機率分配 常態曲線內的機率變化呈現數學規則 分配內絕大多數的機率(99.7%)落於正負3個標準差之內 一般來說,常態化的分配全距約為6個標準差 反曲點(inflection points) 距離平均數負一個標準差位置上,切線斜率由漸增轉為漸減 在距離平均數正一個標準差位置上,切線斜率由漸減轉為漸增 第五節 第八章 描述統計 第一章 科學研究與量化方法
38
標準化常態分配與其應用 標準化常態分配(standard normal distribution) 在常態分配中
量化研究與統計分析 標準化常態分配與其應用 標準化常態分配(standard normal distribution) 某一變項的觀察值呈現常態分配,經轉換後的Z分數所形成的分配稱之 常態分配的變數X已經不是原始分數,而是Z分數 Z分數是距離平均數幾個標準差的量數,不同的Z值,即代表距離平均值多少個標準差,透過機率對照表,可以很快的查出Z值與機率間的關係 在常態分配中 68.26%的觀察值落在Z值±1個標準差)的區間內 95.44%的觀察值會落在Z值±2個標準差的區間內 99.74%的觀察值會落在Z=±3個標準差的區間內 第五節 第八章 描述統計 第一章 科學研究與量化方法
39
T分數 定義 T分數可改善z分數的缺點 將Z分數以下列線性轉換公式轉換成平均數50,標準差10的T分數
量化研究與統計分析 T分數 定義 將Z分數以下列線性轉換公式轉換成平均數50,標準差10的T分數 T分數可改善z分數的缺點 Z值多介於±3之間,計算時多半帶有一至二位的小數點,加上低於平均數的Z分數帶有負號,實際使用上較為不便 T= Z 第五節 第八章 描述統計 第一章 科學研究與量化方法
40
量化研究與統計分析 Chapter 8 is done here.. See you later!
Time for rest Chapter 8 is done here.. See you later! 第八章 描述統計 第一章 科學研究與量化方法
Similar presentations