Presentation is loading. Please wait.

Presentation is loading. Please wait.

陈列文 上海交通大学 物理与天文系/粒子与核物理研究所(INPAC)

Similar presentations


Presentation on theme: "陈列文 上海交通大学 物理与天文系/粒子与核物理研究所(INPAC)"— Presentation transcript:

1 陈列文 上海交通大学 物理与天文系/粒子与核物理研究所(INPAC) lwchen@sjtu.edu.cn
核物质的对称能 陈列文 上海交通大学 物理与天文系/粒子与核物理研究所(INPAC) 对称能 对称能的确定 对称能与核素图上原子核的数目 对称能与暗物质 总结和展望 交叉学科理论研究中心,中国科学技术大学,合肥, 2016年11月18日

2 目录 对称能 对称能的确定 对称能与核素图上原子核的数目 对称能与暗物质 总结和展望

3 原子核的组成 原子核由质子和中子组成 核素: 给定中子数和质子数的原子核 元素: 给定质子数的原子核
同位素: 相同质子数但不同中子数的原子核 重离子:质量数大于4的离子,亦即比α粒子(4He)重的离子 同位旋:就核力的性质而言,质子与中子之间没有明显区别,因此把质子和中子看成同一种粒子(统称为核子)的两种不同状态,类比自旋的概念引入抽象的同位旋(isospin)空间,质子和中子是同位旋I相同,同位旋第3分量I3不同的两种状态 ,由此可确定它们的同位旋I = 1/2,质子的 I3 =1/2 ,中子的I3=-1/2,它们组成同位旋二重态 … (海森堡,1932年)。在强相互作用,同位旋是一个好量子数。 p. 1

4 原子核的质量和结合能 1945.8.9(长崎) 1945.8.6(广岛) p. 2 H-Bomb Atomic Bomb
Power of Sun p. 2

5 重核的裂变 中国: 2016:~2% 2020:~7% 2030:~15% 2050:~22% p. 3

6 Symmetry energy including surface diffusion effects (ys=Sv/Ss)
有限核的对称能 原子核的结合能 - 液滴模型 (Liquid-drop model:Bethe-Weizsäcker mass formula-1935) Symmetry energy term (对称能项) Symmetry energy including surface diffusion effects (ys=Sv/Ss) W. D. Myers, W.J. Swiatecki, P. Danielewicz, P. Van Isacker, A. E. L. Dieperink,…… p. 4

7 有限核的对称能 16O 16N 泡利不相容原理 N > Z N = Z 对称能: 使中子数和质子数 趋于对称 库仑能: 偏离对称
p. 5

8 物质的状态方程 状态方程(EOS-Equation of State): a relationship among several state variables van der Waals EOS: The Nobel Prize in Physics 1910 was awarded to Johannes Diderik van der Waals "for his work on the equation of state for gases and liquids". The EOS depends on the interactions and properties of the particles in the matter. It describes how the state of the matter changes under different conditions p. 6

9 核物质的状态方程 p. 7 Nature of the nuclear force? Structure and stability
of nuclei? Dynamics of heavy ion collisions? Nature of compact stars and dense nuclear matter? p. 7

10 Symmetric Nuclear Matter (relatively well-determined)
核物质的对称能 EOS of Isospin Asymmetric Nuclear Matter (Parabolic law) Symmetric Nuclear Matter (relatively well-determined) Symmetry energy term (poorly known) Isospin asymmetry Nuclear Matter Symmetry Energy p. 8

11 Astrophysics and Cosmology
为什么研究对称能? The multifaceted influence of the nuclear symmetry energy A.W. Steiner, M. Prakash, J.M. Lattimer and P.J. Ellis, Phys. Rep. 411, 325 (2005). Nuclear Physics on the Earth Physics at km scale Physics at fm scale Symmetry Energy Astrophysics and Cosmology in Heaven The symmetry energy is also related to some issues of fundamental physics: 1. The precision tests of the SM through atomic parity violation observables (Sil et al., PRC2005) 2. Possible time variation of the gravitational constant (Jofre et al. PRL2006; Krastev/Li, PRC2007) 3. Non-Newtonian gravity proposed in the grand unified theories (Wen/Li/Chen, PRL2009) 4. Dark Matter (Zheng/Zhang/Chen, JCAP2014; Zheng/Sun/Chen, ApJ2015) p. 9

12 QCD Phase Diagram in 3D: density, temperature, and isospin
V.E. Fortov, Extreme States of Matter – on Earth and in the Cosmos, Springer-Verlag Berlin Heidelberg 2011 Esym: Important for understanding the EOS of strong interaction matter and QCD phase transitions at extreme isospin conditions Heavy Ion Collisions (Terrestrial Lab); Compact Stars(In Heaven); … Quark Matter Symmetry Energy ? M. Di Toro et al., NPA775 (2006); Pagliara/Schaffner-Bielich, PRD81, (2010); Shao et al., PRD85,(2012); Chu/Chen, ApJ780 (2014); H. Liu et a., PRD94 (2016); Xia/Xu/Zong, (2016) At extremely high baryon density, the main degree of freedom could be the deconfined quark matter rather than confined baryon matter, and there we should consider quark matter symmetry energy (isospin symmetry is still satisfied). The isopsin asymmetric quark matter could be produced/exist in HIC/Compact Stars p. 10

13 目录 对称能 对称能的确定 对称能与核素图上原子核的数目 对称能与暗物质 总结和展望

14 核物质状态方程: 多体理论方法 The nuclear matter EOS cannot be measured experimentally, its determination thus depends on theoretical approaches Microscopic Many-Body Approaches Non-relativistic Brueckner-Bethe-Goldstone (BBG) Theory Relativistic Dirac-Brueckner-Hartree-Fock (DBHF) approach Self-Consistent Green’s Function (SCGF) Theory Variational Many-Body (VMB) approach Green’s Function Monte Carlo Calculation Vlowk + Renormalization Group Nuclear Lattice Approach Effective Field Theory Density Functional Theory (DFT) Chiral Perturbation Theory (ChPT) QCD-based theory Phenomenological Approaches Relativistic mean-field (RMF) theory Quark Meson Coupling (QMC) Model Relativistic Hartree-Fock (RHF) Non-relativistic Hartree-Fock (Skyrme-Hartree-Fock) Thomas-Fermi (TF) approximations p. 11

15 核物质状态方程: 多体理论方法 p. 12 Z.H. Li et al., PRC74, 047304(2006)
Dieperink et al., PRC68, (2003) BHF Chen/Ko/Li, PRC72, (2005) Chen/Ko/Li, PRC76, (2007) p. 12 15

16 Promising Probes of the Esym(ρ) (an incomplete list !)
核物质对称能: 实验探针 Promising Probes of the Esym(ρ) (an incomplete list !) Pigmy/Giant resonances Nucleon optical potential B.A. Li, L.W. Chen, C.M. Ko Phys. Rep. 464, 113(2008) p. 13

17 放射性束流装置 Cooling Storage Ring (CSR) Facility at HIRFL/Lanzhou in China (2008) up to 500 MeV/A for 238U Beijing Radioactive Ion Facility (BRIF-II) at CIAE in China (2012) Radioactive Ion Beam Factory (RIBF) at RIKEN in Japan (2007) Texas A&M Facility for Rare Exotic Beams -T-REX (2013) Facility for Antiproton and Ion Research (FAIR)/GSI in Germany (2022) up to 2 GeV/A for 132Sn (NUSTAR - NUclear STructure, Astrophysics and Reactions ) SPIRAL2/GANIL in France (2013) Selective Production of Exotic Species (SPES)/INFN in Italy (2015) Facility for Rare Isotope Beams (FRIB)/MSU in USA (2018) up to 400(200) MeV/A for 132Sn The Korean Rare Isotope Accelerator (KoRIA-RAON(RISP Accelerator Complex) (Planning) up to 250 MeV/A for 132Sn, up to 109 pps …… p. 14

18 核物质对称能:饱和密度附近 Current constraints (An incomplete list) on Esym (ρ0) and L from terrestrial experiments and astrophysical observations Chen/Ko/Li, PRL94, (2005) 饱和密度处对称能的斜率 “misc”: miscellaneous W.G. Newton et al., Journal of Physics: Conf. Series 420 (2013) p. 15

19 核物质对称能:饱和密度附近 Current constraints (An incomplete list) on Esym (ρ0) and L from terrestrial experiments and astrophysical observations Esym(ρ0) = 32.5±2.5 MeV, L = 55±25 MeV L.W. Chen, Nucl. Phys. Rev. (原子核物理评论) 31, 273 (2014) [arXiv: ] B.A. Li, L.W. Chen, F.J. Fattoyev, W.G. Newton, and C. Xu, arXiv: p. 16

20 核物质对称能:饱和密度附近 饱和密度处对称能的斜率 饱和密度处对称能的大小 p. 17
Jim Lattimer and Andrew Steiner using 6 out of approximately 30 available constraints J.M. Lattimer and A.W. Steiner, EPJA50, (2014) 40 饱和密度处对称能的斜率 The centroid is around Sv=31 MeV and L=50 MeV Microscopic calculations (H/G) do not include higher-order contribution? EOS of SNM? Chen/Ko/Li/Xu, PRC82, (2010) Why? Zhang/Chen, PLB726, 234 (2013) Neutron skin is actually determined by L(0.11 fm-3) rather than L(0.16 fm-3) 0.11 fm-3 ~ Average density of Heavy Nuclei 饱和密度处对称能的大小 p. 17

21 核物质对称能:亚饱和密度行为 p. 18 Z. Zhang and LWC, PRC92, 031301(R) (2015)
Wada and Kowalski: experimental results of the symmetry energies at densities below 0.2 𝝆 𝟎 and temperatures in the range 3 ~11 MeV from the analysis of cluster formation in heavy ion collisions. Wada et al., Phys. Rev. C85, (2012) ; Kowlski et al., Phys. Rev. C75, (2007) Natowitz et al., Phys. Rev. Lett. 104, (2010) p. 18

22 A Soft or Stiff Esym at supra-saturation densities ???
核物质对称能:超饱和密度行为 A Soft or Stiff Esym at supra-saturation densities ??? pion ratio (FOPI): ImIQMD, Feng/Jin, PLB683, 140(2010) n/p v2 (FOPI): Russotto/Trauntmann/Li et al., (UrQMD) PLB697, 471(2011) PRC94, (2016) Stiffer Pion Medium Effects? Threshold effects? Δ resonances? …… Xu/Ko/Oh PRC81, (2010) Xu/Chen/Ko/Li/Ma PRC87, (2013) Hong/Danielewicz, PRC90, (2014) Song/Ko, PRC91, (2015) Softer pion ratio (FOPI): IBUU04, Xiao/Li/Chen/Yong/Zhang, PRL102,062502(2009) ImIBLE, Xie/Su/Zhu/Zhang, PLB718,1510(2013) p. 19

23 Esym systematics: A Soft Esym at supra-saturation densities ???
核物质对称能:超饱和密度行为 Esym systematics: A Soft Esym at supra-saturation densities ??? 60 EDFs Chen, EPJ Web of Conf. 88, (2015) p. 20

24 核物质对称能:现状 Esym(ρ0) = 32.5±2.5 MeV L = 55±25 MeV p. 21
Cannot be that all the constraints on Esym (ρ0) and L are equivalently reliable since some of them don’t have any overlap. However, essentially all the constraints seem to agree with: Esym(ρ0) = 32.5±2.5 MeV L = 55±25 MeV The symmetry energy at subsaturation densities have been relatively well-constrained. But at very low densities, the clustering could be important and how does it affect the symmetry energy? All the constraints on the high density Esym come from HIC’s (FOPI), and all of them are based on transport models. The constraints on the high density Esym are elusive and controversial for the moment !!! (A new window from Esym systematics? Softer high density Esym? – L.W. Chen, EPJ Web of Conferences 88, (2015)) p. 21

25 Chinese@NuSYM15 (Krakow, Poland)

26 NuSYM16 (Tsinghua, Beijing,China)
p. 23

27 目录 对称能 对称能的确定 对称能与核素图上原子核的数目 对称能与暗物质 总结和展望

28 核素示意图 核素图上原子核能有多少个? 丰中子核的边界在哪儿? 已知大约118种元素(包括近年来新发现的、还未命名的)
只有不到300个稳定核(对此我们有一定认识) 对大部份不稳定核有所知,但知之不多 对其余几千个远离稳定区的核则一无所知 这些核素为人们提供了丰富的重离子源 (~270) (~3000) (~4000) SHE 核素图上原子核能有多少个? 丰中子核的边界在哪儿? p. 24

29 Dripline: Named by John Wheeler
原子核的存在极限:滴线的位置 Dripline: Named by John Wheeler Two-neutron (-proton) separation energy: 𝑆 2𝑛 𝑁,𝑍 =𝐵 𝑁−2,𝑍 −𝐵 𝑁,𝑍 >0 𝑆 2𝑝 𝑁,𝑍 =𝐵 𝑁,𝑍−2 −𝐵 𝑁,𝑍 >0 Same neutron number The two-neutron (-proton) drip line nuclei is recognized as the last (or heaviest) even-even nuclei in an isotope (isotone) chain which satisfies the criteria given above. Same proton number p. 25

30 A.V. Afanasjev et al., PLB726, 680 (2013)
原子核的存在极限:滴线的位置 Obtained two-neutron (-proton) drip line in SHF approach and RMF theory J. Erler et al., Nature 486, 509 (2012) Theoretically, although various mean-field models predict similar proton drip line, the predicted neutron drip line exhibit significant variations. Why? A.V. Afanasjev et al., PLB726, 680 (2013) p. 26

31 Neutron dripline is sensitive to L.
滴线与对称能 Neutron dripline is sensitive to L. Calculations from microscopic density functionals provide no evidence for the strong correlation between neutron dripline and L. p. 27

32 滴线与对称能-液滴模型估算 Semi-empirical mass formula can provide us a good preview of how the EoS affects the nuclear drip lines 𝐵 𝑁,𝑍 = 𝑎 𝑣𝑜𝑙 𝐴+ 𝑎 𝑠𝑢𝑟𝑓 𝐴 2/3 + 𝑎 𝑠𝑦𝑚 𝐴 𝑁−𝑍 2 𝐴 + 𝑎 𝐶𝑜𝑢𝑙 𝑍 𝑍+1 𝐴 1/3 + 𝐸 𝑝𝑎𝑖𝑟 If we assume 𝑎 𝑠𝑦𝑚 𝐴 ≈ 𝑎 𝑠𝑦𝑚 𝐴+2 , for a typical neutron drip line nuclei 𝟔𝟖 𝟐𝟐𝟐 𝐄𝐫 (Z=68) 𝑺 𝟐𝒏 𝑵,𝒁 ≈−𝟐 𝒂 𝒗𝒐𝒍 −𝟎.𝟐𝟐 𝒂 𝒔𝒖𝒓𝒇 −𝟏.𝟐𝟒 𝒂 𝒔𝒚𝒎 𝑨 +𝟐.𝟐𝟕 𝒂 𝑪𝒐𝒖𝒍 for a typical proton drip line nuclei 𝟗𝟔 𝟐𝟐𝟐 𝐂𝐦 (Z=96) 𝑺 𝟐𝒑 𝑵,𝒁 ≈−𝟐 𝒂 𝒗𝒐𝒍 −𝟎.𝟐𝟐 𝒂 𝒔𝒖𝒓𝒇 +𝟎.𝟔𝟎 𝒂 𝒔𝒚𝒎 𝑨 −𝟓𝟖.𝟎𝟕 𝒂 𝑪𝒐𝒖𝒍 𝒂 𝒗𝒐𝒍 ~ −𝟏𝟔 𝐌𝐞𝐕 𝒂 𝒔𝒖𝒓𝒇 ~ 𝟏𝟖 𝐌𝐞𝐕 𝒂 𝑪𝒐𝒖𝒍 ~ 𝟎.𝟕 𝐌𝐞𝐕 P. Danielewicz, NPA 727, 233 (2003) 𝒂 𝒔𝒚𝒎 𝑨 corresponds to 𝑬 𝒔𝒚𝒎 𝝆 𝒄 , where 𝝆 𝒄 ~0.11 fm-3 for heavy nuclei M. Centelles et al., PRL102, (2009); L.W. Chen, PRC83, (2011); P. Danielewicz and J. Lee, NPA922, 1 (2014) p. 28

33 滴线与对称能-平均场理论计算 p. 29 𝑬 𝒔𝒚𝒎 𝝆 𝒔𝒄 =𝟐𝟔.𝟔𝟓±𝟎.𝟐𝟎 𝐌𝐞𝐕 4 Skyrme interaction
Z. Zhang/LWC PLB726, 234 (2013) 𝑬 𝒔𝒚𝒎 𝝆 𝒔𝒄 =𝟐𝟔.𝟔𝟓±𝟎.𝟐𝟎 𝐌𝐞𝐕 4 Skyrme interaction MSL1 𝑬 𝒔𝒚𝒎 𝝆 𝒄 =𝟐𝟔.𝟔𝟕 𝐌𝐞𝐕 KDE 𝑬 𝒔𝒚𝒎 𝝆 𝒄 =𝟐𝟔.𝟑𝟗 𝐌𝐞𝐕 SLy9 𝑬 𝒔𝒚𝒎 𝝆 𝒄 =𝟐𝟔.𝟕𝟐 𝐌𝐞𝐕 SLy4 𝑬 𝒔𝒚𝒎 𝝆 𝒄 =𝟐𝟔.𝟒𝟗 𝐌𝐞𝐕 1 relativistic mean field DD-ME𝛿 𝑬 𝒔𝒚𝒎 𝝆 𝒔𝒄 =𝟐𝟔.𝟖𝟔 𝐌𝐞𝐕 A strong correlation exists between the two-neutron drip line and 𝑬 𝐬𝐲𝐦 𝝆 𝒄 !!! p. 29

34 R. Wang and L.W. Chen, PRC92, 031303(R)(2015)
滴线与对称能-平均场理论计算 R. Wang and L.W. Chen, PRC92, (R)(2015) J. Erler et al., Nature 486, 509 (2012) The candidate interactions with similar Esym(rho_c) predict similar neutron dripline Next rare isotope (FRIB) facility can cover the dirpline up to Z=30 and around Z~40 Up to Z=120, the number of even-even nuclei is 1941+/-31 (only 800 have been discovered experimentally) and the total number of bound nuclei is 6866+/-166 (only 3191 have been discovered experiment ally) Exp:M. Thoennessen, Rep. Prog. Phys. 76, (2013); Int. J. Mod. Phys. E 23, (2014); arXiv: p. 30

35 目录 对称能 对称能的确定 对称能与核素图上原子核的数目 对称能与暗物质 总结和展望

36 Dark Matter Search χ χ’ f f’ Collider AMS XMM-Newton Compact Direct
Planck (A&A571(2014) A16): Baryon Matter: ~5% Dark Matter: ~27% Dark Energy: ~68% Dark Matter Search Candidates: -WIMP -Axion -SuperWIMPs -Sterile Neutrinos -Gravitino -…… Compact Objects Direct Detection f f’ χ χ’ Collider AMS XMM-Newton p. 31

37 暗物质的直接探测 ? ! They use the empirical form factors proposed by Helm as
Nuclear Form Factor Nuclear Recoil DM 𝒗≈𝟐𝟐𝟎 km/s 𝑬 𝑹 ≈ 𝜪(𝟏𝟎 𝒌𝒆𝑽 They use the empirical form factors proposed by Helm as And they usually set the isospin-violating parameter equal to 1 Detectable Signal R. H. Helm, Phys. Rev. (1956) 1466 Helm —— Charge distributions —— Matter distributions ? J. Ellis et al., Eur. Phys. J. C 24 (2002) 311 R.C. Cotta et al., New J. Phys. 11 (2009) Neutralino couples to proton and neutron differently ! p. 32

38 同位旋破缺的暗物质 Is not consistent with each other Consistent with each other
𝒈 𝒏𝒑 = 1.0 Is not consistent with each other Consistent with each other 𝒈 𝒏𝒑 = -0.7 J. L. Feng et al. Phys. Lett. B , (2011) X.G. He, B. Ren, and J. Tandean, PRD85, (2012) p. 33

39 原子核内中子和质子的分布 MeV 132 𝑋𝑒 : fm
Zheng/Zhang/Chen, JCAP08(2014)011 We investigate how the Nuclear Symmetry Energy affects the matter distributions under the constraints of Neutron skin thickness of Pb given by PREX/JLab 208 𝑃𝑏 : fm MeV 132 𝑋𝑒 : fm Huge uncertainties of neutron distributions are given which are strongly related to symmetry energy! p. 34

40 symmerty energy effect
核的形状因子:对称能效应 Zheng/Zhang/Chen, JCAP08(2014)011 Little symmetry energy effect Significant symmerty energy effect p. 35

41 Little effect (~1%) compared with the empirical values
核的形状因子:对称能效应 Zheng/Zhang/Chen, JCAP08(2014)011 Sensitivities of LUX and XENON100 are sufficiently reduced to be consistent with CDMS Little effect (~1%) compared with the empirical values Significant improvement in the sensitivity of Xe-based detectors compared with the empirical values due to Nuclear Symmetry Energy effect p. 36

42 中子星吸积暗物质 𝒓 𝒑 Traveling path (Geodesic equation) Capture condition
Neutron star 𝑟 𝑝 : the perihelion radius Total accretion rate Ms: mass of neutron stars (per solar mass); Rs: radius of neutron stars (km) p. 37

43 中子星吸积暗物质 Fraction of the capturable dark matter
Scattering inside neutron star matter Baryon density: Proton fraction: Neutron star EOS Pauli blocking factor: Travelling path: Isospin-violating factor: What we are interested in Scattering cross-section in the free space: C. Kouvaris, Phys. Rev. D 77 (2008) p. 38

44 Varying with Symmetry Energy !
中子星吸积暗物质 Zheng/Sun/Chen, ApJ800, 141 (2015) EOS of neutron star matters TOV Neutron stars consist of β-equilibrium npeμ matter with charge neutrality proton fraction baryon density Varying with Symmetry Energy ! p. 39

45 中子星吸积暗物质 Total mass So small ! p. 40
t: the living age of the neutron star f: contains all the effects caused by different neutron star strutures For old neutron stars around the earth: So small ! or p. 40

46 黑洞的形成 Black hole formation p. 41
Captured DM will go on scattering with star matters and accumulate within a small radius at the star core When the mass of the DM exceed the Chandrasekhar limit (for non-interacting ADM) too large Planck mass: Black hole forms and it will eventually destroy the whole neutron star So we require to ensure the existence of the old neutron stars p. 41

47 中子星作为暗物质的探针 Constraints from old neutron stars p. 42 Much more
Zheng/Sun/Chen, ApJ800, 141 (2015) Constraints from old neutron stars Much more sensitive than the sensitivity of the traditional detectors (~10-42 cm2) Isospin-violating effects affect the constraints significantly Isospin-violating effects vary with the nuclear inter -action we used p. 42

48 中子星作为暗物质的探针 Constraints from the realistic PSR B1257+12 p. 43
Zheng/Sun/Chen, ApJ800, 141 (2015) The pulsar PSR B is a planetary system with one solitary neutron star being orbited by three planets located 0.6 kpc (kiloparsec千秒差距=3262 light year) away from the solar system. Its age is about Gyr (Ts=10^5 K and M=1.4Msun) For low mass DM (<20 GeV), the constraint from NS is much stronger than that from direct detection experiments ! p. 43

49 目录 对称能 对称能的确定 对称能与核素图上原子核的数目 对称能与暗物质 总结和展望

50 总结和展望 通过重离子碰撞,原子核结构性质(mass, neutron skin, GR/PG…),
以及核子光学势的研究,我们已经对亚饱和密度以及饱和密度附近 核物质对称能有了比较好的认识: 亚饱和密度区的核物质对称能 – 比较精确 饱和密度附近的核物质对称能: Esym(ρ0) =32.5±2.5 MeV and L=55±25 MeV 更精确的约束需要更精确的实验数据和更可靠的理论方法! 决定核物质对称能的高密行为依然是一个巨大的挑战 (Many-body forces, Short range tensor forces, Short range NN correlations, Model cross check, more data,……).丰中子核引起的高能重离子碰撞的实验 数据将非常重要! 对称能的确定对于理解一些基本的科学问题(比如核素图上原子核的 数目和暗物质等)有重要意义 p. 44

51 Acknowledgements Collaborators: Funding: Peng-Cheng Chu (QTU, Qingdao)
Wei-Zhou Jiang (SEU. Nanjing) Che Ming Ko, Zhen Zhang (TAMU. Texas) Bao-An Li, Bao-Jun Cai (TAMU-Commerce, Texas) Xiao-Hua Li (USC, Hengyang) De-Hua Wen (SCUT, Guanzhou) Zhi-Gang Xiao (Tsinghua, Beijing) Chang Xu (NJU, Nanjing) Jun Xu (SINAP, CAS, Shanghai) Gao-Chan Yong (IMP, Lanzhou) Xin Wang, Zhao-Wen Zhang, Kai-Jia Sun, Hao Zheng, Rui Wang, Ying Zhou, Jie Pu (SJTU, Shanghai) Funding: National Natural Science Foundation of China Major State Basic Research Development Program (973 Program) in China Shanghai Rising-Stars Program Shanghai “Shu-Guang” Project Shanghai “Eastern Scholar” Science and Technology Commission of Shanghai Municipality

52 谢 谢! Thanks!


Download ppt "陈列文 上海交通大学 物理与天文系/粒子与核物理研究所(INPAC)"

Similar presentations


Ads by Google