Presentation is loading. Please wait.

Presentation is loading. Please wait.

ON-CHIP SCANNING CONFOCAL MICROSCOPE WITH 3D

Similar presentations


Presentation on theme: "ON-CHIP SCANNING CONFOCAL MICROSCOPE WITH 3D"— Presentation transcript:

1 ON-CHIP SCANNING CONFOCAL MICROSCOPE WITH 3D
MEMS SCANNER AND VCSEL FEEDBACK DETECTION C. Gorecki, L. Nieradko et. al. Université de Franche-Comté, Besançon, FRANCE Wroclaw University of Technology, Wroclaw, Poland Transducers 07’ p 2561~2564 Au/ Reported by: Institute : 奈微所 Name : 楊志誠 Student ID : d VCSEL (Vertical Cavity Surface Emitting Lasers)

2 Outline Introduction Design and Fabrication Experimental & Simulation Results Conclusion

3 蔡司改良鏡片技術 光學顯微鏡從此 性能高強價格低廉
Microscope History 1665 虎克發明光學顯微鏡 1981~1986 賓尼等人發明STM, AFM 1886 蔡司改良鏡片技術 光學顯微鏡從此 性能高強價格低廉 2007 Now MEMS 1950 年代 TEM SEM 1957 Marvin 發明 Confocal TEM的電子束要能穿透切成薄片的標本, 通常用來研究細胞內部的超顯微結構 SEM 標本的表面先鍍上薄薄的一層黃金, 再用電子束掃瞄其表面,適合用來研究標本表面的微細結構 ,通常可以拍攝同一細胞表面的3D立體結構

4 Scanning Confocal Microscope
Widely used in biomedicine, living cell Three-dimensional (3-D) image Non-invasive imaging of transparent samples 1.Reject light from out-of-focus planes 2.Provide clear in-focus image of a thin cross section

5 Introduction Design and Fabrication Experimental & Simulation Results Conclusion

6 ARCHITECTURE OF CHIP-SCALE CONFOCAL MICROSCOPE
3 layers structure Comb-drive actuators (Z and X-Y) 100 μm for Vertical motion (Z) 50 μm in both directions by actuating of micro lens by x-y-axis scanner . Laser microscope on-chip silicon-based MEMS Glass micro lenses . VCSELs (Vertical Cavity Surface Emitting Lasers)

7 Fabrication process of glass microlens. [ Method 1]
Isentropic Etching Glass reflow DRIE

8 Fabrication process of glass microlens [ Method 2]
single-mask process KOH water solution<111> <100> Single-mask microfabrication of aspherical optics using KOH anisotropic etching of Si

9 Introduction Design and Fabrication Experimental & Simulation Results Conclusion

10 ANSYS Simulation Different shape design to investigate their performance Frequency and vibration [ High Displacement & Lower voltage ] [Higher Rigidity & Higher voltage ] for lens D > 300 μm

11 Glass microlens fabrication
The silicon mould having depth from 46 μm to 90 μm Etch depth is non-linear function of mask diameter Etch rate μm/min Mask Diameter & Mould Diameter are linear larger Microlens focal length Increased Etched time Silicon Nitride thicker

12 Introduction Design and Fabrication Experimental & SimulationResults Conclusion

13 Conclusion Precise positioning and focal tuning of micro lens
— 2-3μm resolution — penetration depth down to 30 μ m Achieved high-resolution positioning control without need for large numbers of electrodes — 50 μm (X,Y) — 100 μm (Z) 500 times smaller than anything in this class

14 Discussion Wavelength of light used is major factor in resolution
shorter wavelength  greater resolution Rayleigh criteria  refractive wavelength shorter,the penetration depth will be shallow。 Cell Damage : Cell damage and death for laser light Bleach:Most specimen without fluorescent,so adding dyes are necessary。 Laser light will bleach the dyes in the period of lighting。

15 Thank you for your attention!

16 Reference [1] .Magnetically Actuated Scanning Microlens for NIR Raman Spectroscope , Chin-Pang- Billy Siu et al, MEMS 2007, Kobe , Japan, pp [2]. S. Kwon and L.P. Lee, “Micromachined transmissive scanning confocal icroscope”, Optics Lett, vol. 29, pp , 2004. [3] S Bargiel, L Nieradko, M Józwik, C Gorecki, J.A Dziuban, “New generation of fully integrated optical microscopes on-chip: application to confocal microscope“, Proc. SPIE, vol. 6186, 2006. [4] D. Heinis, C. Gorecki, “Feedback-induced voltage change of Vertical Cavity Surface Emitting Laser as an active detection system for miniature optical scanning probe microscopes”, Optics Express, vol. 14, pp , 2006. [5] R. Carrasco, J.A. Dziuban, I. Moreno, C. Gorecki, R. Walczak, M. Kopytko, L. Nieradko, M. Józwik, “Optical microlenses for MOEMS” Proc. SPIE, vol. 5836, pp , 2005. [6]. [7]. [8].

17 Vertical cavity surface emitted laser
面射型雷射二極體為一新型發光元件,此元件與傳統雷射二極體基本的差別在於 共振腔 磊晶層相對位置之不同;傳統雷射二極體的共振腔與磊晶層平行,反射面 係利用晶體自然斷裂面形成而與磊晶層垂直,雷射光由側面發出,故又稱邊射型雷射 (Edge-emitting laser),而本元件的共振腔與磊晶層垂直,反射面係由磊晶層或表層 介電質薄膜組成,雷射光由正面發出,故稱為垂直共振腔面射型雷射。 邊射型雷射於晶片製程結束後須將晶片劈裂成晶條,並進行端面鍍膜,此製程複雜 耗時且為影響製程良率之關鍵。面射型雷射因非利用晶體自然斷裂面作為反射面,故 無須利用劈裂或進行端面鍍膜,可節省可觀之製程時間並避免因此而影響製程良率。 另於晶片製程結束後即可於晶片上直接進行元件量測(on wafer testing),可節省量測 成本及時間。 預期面射型雷射可能之應用方向有下列各項: ‧光數據鏈路傳輸(Serial Optical Data Links)目前已有HP、Motorola、Honeywell、 IBM、Vixel等公司投入 ‧雷射列印(Laser Printing):利用面射型雷射則可同時二維列印,加快列印時間, 目前Xerox已投入此方面研究。 [工 業技術研究院 奈米科技研發中心]

18 Rayleigh Criterion Definitions Acceptance angle θ
Numerical Aperture NA = n sinθ Rayleigh resolution criterion for a circular aperture Δx = 0.61 λ/NA Highest Typical Resolution Optical Microscope ~200 nm Electron Microscope ~0.1 nm

19 Confocal Characteristics
Tranditional Confocal Horizontal resolution (diffraction limited): Vertical resolution 共焦掃描顯微鏡僅對在聚焦面上形成清晰的影像,若我們逐步移動聚焦面,則可取得觀測樣品其深淺有序的斷面,將這些斷面的影像經由電腦處理,即可重組出相對應的三度空間影像。

20 Zeiss Confocal Microscope

21 Numerical Aperture

22 Sources of Aberrations
Monochromatic Aberrations Spherical aberration Coma Astigmatism Flatness of field Distortion Chromatic Aberrations Longitudinal aberration Lateral aberration Images reproduced from:


Download ppt "ON-CHIP SCANNING CONFOCAL MICROSCOPE WITH 3D"

Similar presentations


Ads by Google