Presentation is loading. Please wait.

Presentation is loading. Please wait.

CH. 9 Design via Root Locus

Similar presentations


Presentation on theme: "CH. 9 Design via Root Locus"— Presentation transcript:

1 CH. 9 Design via Root Locus

2 9.1 Introduction Figure 9.1 a. possible design point via gain adjustment (A) design point that cannot be met via gain adjustment (B); 需補償器設計

3 Figure 9.1 (b) responses from poles at A and B
9.1 Introduction Figure 9.1 a. possible design point via gain adjustment (A) design point that cannot be met via gain adjustment (B); Figure (b) responses from poles at A and B

4 補償器種類 Figure 9.2 Compensation techniques: a. cascade; b. feedback

5 9.2節: 9.3節: 9.4節: 9.5節: design of cascade compensation to improve ess
design of cascade compensation to improve both ess and 暫態反應 9.5節: design of feedback compensation

6 9.2 cascade compensation to improve steady-state error
改善 ess 補償器3種 1/S : idea integral compensator 理想積分器 → ess = 0 亦變 transient response Fig.9.3b (i.e.變根軌跡圖) K1 + K2/S : PI controller ( Proportional-plus-Integral) → ess = 0 可不變 transient response Fig.9.3c (S+Zc)/(S+Pc) : Pc <Zc Lag Compensator → ess ↓ 可不變 transient response

7 b. not on the root locus with 1/S compensator added
Figure 9.3 b. not on the root locus with 1/S compensator added a. root locus 此設計已無從獲致系統 A

8 ess = finite → ess = 0 (缺點 active network)
補償器 1/S : idea integral compensator → ess = 0 ∵ system type 增 1 ess = finite → ess = 0 (缺點 active network) (缺點 變transient response)

9 Figure 9.3 c. on root locus with PI compensator added 當 a 甚小 → 0 不變 transient response
PI controller 補償

10 (不變transient response)
(S + a)/S : PI controller ( Proportional-plus-Integral) → ess = 0 ∵ system type 增 1 可不變 transient response 當 a 甚小 Fig.9.3c (缺點 active network) (不變transient response)

11

12 補償器 (S+Zc)/(S+Pc) : Pc <Zc Lag Compensator
暫態反應 okay 希望調降穩態誤差 暫態反應 okay 維持P點; Zc → Pc 控制器角度貢獻 → 0

13

14

15

16 Figure 9. 4 Closed-loop system for Example 9
Figure Closed-loop system for Example 9.1: 設計目標: 希望 ess = 0; 不變 transient response (下頁說明控制器選擇) before compensation after PI compensation

17 → ess = 0 可不變 transient response Fig.9.3c
1/S : idea integral compensator 理想積分器 → ess = 0 亦變 transient response Fig.9.3b (i.e.變根軌跡圖) K1 + K2/S : PI controller ( Proportional-plus-Integral) → ess = 0 可不變 transient response Fig.9.3c (S+Zc)/(S+Pc) : Pc <Zc Lag Compensator → ess ↓ 可不變 transient response

18 Figure 9.5 Root locus for uncompensated system of Fig. 9.4(a) 3階系統
Example 9.1 Figure 9.5 Root locus for uncompensated system of Fig. 9.4(a) 階系統 Figure 9.6 Root locus for compensated system of Figure 9.4(b)

19 Figure time response PI compensated system response and the uncompensated system response of Example 9.1 設計目標: ess = 0 不變 transient response

20 Figure 9.8 PI controller

21 1/11 1.未補償系統 ζ= → 根軌跡決定系統位置 2. ess降低10倍 → 先求未補償系統的 ess

22 Uncompensated system 先畫根軌跡 找出系統現況
2/11

23 Uncompensated system 找未補償系統的穩態誤差 3/11
e(∞) = 1/(1 + Kp) = Kp =lims→0 G(s) =164.6/20 = 8.23

24 → ess = 0 可不變 transient response Fig.9.3c
1/S : idea integral compensator 理想積分器 → ess = 0 亦變 transient response Fig.9.3b (i.e.變根軌跡圖) K1 + K2/S : PI controller ( Proportional-plus-Integral) → ess = 0 可不變 transient response Fig.9.3c (S+Zc)/(S+Pc) : Pc <Zc Lag Compensator → ess ↓ 可不變 transient response

25 5/11

26

27 ec(∞) = 0.0108 由Gc(s) 調整 Uncompensated system 7/11 e(∞) = 1/(1 + Kp)
= Kp = lims→0 G(s) = 164.6/20 = 8.23 ec(∞) = 由Gc(s) 調整

28 Figure 9.12 Compensated system of Figure 9.11 8/11
ec(∞) = = 1/(1 + Kpc) Kpc = lims→0 Gc(s)G(s) = lims→0 Gc(s) Kp = lims→0 Gc(s) 8.23 = lims→0 Gc(s) = Zc/Pc = Gc(s) = (s+Zc)/(s+Pc) → 取 Pc=0.01 → Zc=0.111

29 9/11 Table 9.1 Predicted characteristics of uncompensated and lag-compensated systems for Example 9.2

30 Figure 9.13 Step responses of uncompensated and lag-compensated systems for Example 9.2 10/11

31 Figure 9. 14 Step responses of the system for Example 9
Figure 9.14 Step responses of the system for Example 9.2 lag compensator 更趨近原點 → 反應較慢 最終之ess不變 /11

32 執行 Lag compensation 的相關公式

33 9.3 Improving Transient Response via Cascade Compensation
改善 暫態反應 補償器3種 S : pure differentiator 純微分器 S + Zc : PD controller ( Proportional-plus-Derivative) (S+Zc)/(S+Pc) : Pc > Zc Lead Compensator 超前補償器

34 Figure 9. 15 Using PD compensation (S + Zc) 改變暫態反應 %OS不變 1/3 a
Figure Using PD compensation (S + Zc) 改變暫態反應 %OS不變 1/3 a. uncompensated; b. compensator zero at –2; c. compensator zero at –3; d. compensator zero at – 4

35 Figure time response /3 Uncompensated system and ideal derivative compensation solutions from Table 9.2

36 Table 9.2 Predicted characteristics for the systems of Figure 9.15 3/3

37 Example 9. 3 : S + Zc : PD controller Figure 9
Example 9.3 : S + Zc : PD controller Figure 9.17 Feedback control system /7 設計目標: 補償後系統 %OS = 16% i.e. ζ= tsc = ts/3

38 Figure 9.18 Example 9.3 Root locus for uncompensated system 2/7
先求未補償系統位置 %OS = 16% →ζ= 次求未補償系統 ts ts = 4/(ζωn) = 4/1.205 = 3.32

39 Figure 9.18 Example 9.3 Root locus for uncompensated system 2/7

40 Figure Compensated dominant pole superimposed over the uncompensated root locus for Example /7 希望補償後 tsc= 3.32/3 = → (ζωn)c = → %OS 不變 →補償後 dominant poles = ± j6.192 希望補償後 dominant poles = ± j →∠Gc(s)G(s) = 目標 設計 Gc(s) = S + Zc PD controller

41 Figure 9.20 4/7 Evaluating the location of the compensating zero for Example 9.3
希望之角度補償 ∠S + Zc = -∠G(s)

42 Figure 9.21 Root locus for the compensated system of Example 9.3 5/7

43 Figure 9.22 time response Uncompensated and compensated system step responses of Example 9.3 6/7

44 Table 9.3 Uncompensated and compensated system characteristics for Example 9.3 7/7

45 Figure 9.23 PD controller S + Zc

46 Example 9.4 Lead compensator design (S+Zc)/(S+Pc) : Pc > Zc
設計目標: 補償後系統 %OS = 30% i.e. ζ=0.358 tsc = ts/2 Figure uncompensated and compensated dominant poles

47 目標 →∠Gc(s) + ∠kG(s) = -1800 ∠kG(s) = -1800
∠Gc(s) = ∠(S+Zc)/(S+Pc) = θc 超前控制器設計 → 選擇 Lead compensator 貢獻的角度 ∠kG(s) = -1800

48 Figure 9.25 Three of the infinite possible lead compensator solutions Lead compensator 貢獻的角度
(S+Zc)/(S+Pc) : Pc > Zc ∠(S+Zc)/(S+Pc) = θc 正值 超前控制器 目標 →∠Gc(s)G(s) = 1800 超前控制器設計 → 選擇 Lead compensator 貢獻的角度 → ∠Gc(s) = ∠(S+Zc)/(S+Pc) = θc

49 Table 9.4 Comparison of lead compensation designs for Example 9.4
系統階數? 是否有2個主要極點? 是否有零點? 能否抵消? 比較規格達成度 確認最佳設計 Which is the best design?

50 Figure 9.28 Compensated system root locus (which is this design?)

51 Figure 9.29 Uncompensated system and lead compensation responses for Example 9.4

52 9.4 design of cascade compensation to improve both ess and 暫態反應
improve both 暫態反應 first then improve ess Example 9.5 自修

53 PID 控制器: (S + Zc) (S + a) / S
改善 ess 補償器3種 /3 1/S : 積分器 → ess = 0 (S + a)/S : PI 控制器 → ess = 0 (S+Zc)/(S+Pc) : Pc <Zc Lag Compensator → ess ↓ 控制器設計原則: 選 pole, zero 近原點, 維持暫態反應不變 改善 暫態反應 補償器3種 S : 微分器 S + Zc : PD 控制器 (S+Zc)/(S+Pc) : Pc > Zc Lead Compensator 同時改善 暫態反應 和 ess PID 控制器: (S + Zc) (S + a) / S Lag-Lead 補償器: [(S+Zc)/(S+Pc)]Lead [(S+Zc)/(S+Pc)]Lag 設計原則: 先調暫態反應 再調穩態誤差

54 2/3 Ex. 9.6 Fig.9.37 %OS=20% i.e. ζ=0.456 Tsc=Ts/2 Ts=4/(ζωn)
essc= ess/10 kGH(s) = 1. 繪未補償系統根軌跡 a. 根軌跡條數=3 %OS=20% i.e. ζ= 0.456 b. 實軸上根軌跡 c. 漸近線(3 zeros at ∞ ) = -16/3 = π/3 ;π; 5π/3

55 1. 繪未補償系統根軌跡 3/3 2. 先調暫態反應 f. 補償後系統位置 Ts=4/(ζωn) = 4/1.794
d. Breakaway point 1+kGH(s) = 0 k(s) = -1/ [GH(s)] → dk/ds = 0 → s = -2.43; (不適用) e.trial-and-error ∠GH(s) = find未補償系統 at s = ± j 3.501 ∣ kGH(s) ∣= 1 → k = 192.1 2. 先調暫態反應 f. 補償後系統位置 Ts=4/(ζωn) = 4/1.794 Tsc=Ts/2 → (ζωn)c = 2(1.794) 補償後系統 at s = ± j 7.003 3/3

56 2. 先調暫態反應 選 Zc = 6 → Pc = 29.1 4/5 g. Lead 補償器 GcL(s)設計 補償後系統
at s = ± j 7.003 GcL(s) 角度貢獻 ∠GcLGH(s) = -1800 ∠GcL(s) = ∠GH(s) = – ( ) = GcL(s)= (S+Zc)/(S+Pc) Pc > Zc 選 Zc = 6 → Pc = 29.1 4/5 ∣k GcL(s)GH(s)∣= 1 → k = 1977

57 3. 後調穩態誤差 essc= ess/10 ess=1/Kv Kv=lims→0 skGH(s)= 192.1/60
h. Lag 補償器 GcLag(s)設計 經 Lead 補償後系統 at s = ± j 7.003 Lag 補償器 需維持 system at s = ± j 7.003 且降 essc= ess/10 = 60/1921 k GcLag(s) GcLGH(s) Type1系統 GcLag(s)= (S+Zc)/(S+Pc) Pc <Zc i.e. Kvc=lims→0 s GcLag(s) kGcLGH(s) = 1921/60 lims→0 GcLag(s) = (Zc/Pc )(1977/291)

58


Download ppt "CH. 9 Design via Root Locus"

Similar presentations


Ads by Google