Download presentation
Presentation is loading. Please wait.
1
空調工程介紹 空調工程之功能 室內環境之條件 空調工程之方式 中央系統工程之設備及施工項目
2
空調工程介紹 1.空調工程之功能: 空調工程主要分類: 空調工程之功能: 舒適性空調(人員) 產業用空調(製程) 調節溫度 調節相對濕度
空氣宜流動與均勻分布 空氣過濾與稀釋 防治噪音
3
空調工程介紹 2.室內環境之條件--人員舒適圖表:
4
空調工程介紹 3.空調工程之方式--系統與迴路圖示:
5
空調工程介紹 4.中央系統空調之設備及施工項目: 設備項目: 施工項目: 冰水機(滷水機) 設備安裝及TAB工程 冷卻水塔 水路配管工程
膨脹水箱 冷卻水/冰水/滷水泵 空調箱/小型冷風機 送/排風機 施工項目: 設備安裝及TAB工程 水路配管工程 風管配管工程 空調配電工程 空調控制工程 中央監控工程
6
空調設備說明-冰水主機
7
空調設備說明-冰水主機 1.冷凍循環系統(Basic System)
8
空調設備說明-冰水主機 2.冷凍循環系統(Mollier Chart) enthalpy pressure expansion device
condenser compressor evaporator 36°F (2.2°C) 105°F (40.6°C) 2.冷凍循環系統(Mollier Chart) Additionally, when operating in ice-making mode, an ice-making chiller will generally be less efficient than when it operates in cooling mode. As mentioned previously, producing the colder fluid temperature requires the temperature (and, therefore, the pressure) of the refrigerant inside the chiller evaporator to be lower. This increases the compressor lift—the difference in refrigerant pressure between the evaporator and condenser—and requires the compressor to work harder. The increased compressor lift, and the decreased capacity, both generally cause the chiller to operate less efficiently during ice-making mode than when operating in conventional cooling mode.
9
空調設備說明-冰水主機 水冷式 氣冷式 3.冰水機之工作溫度(CNS-12575): 冷凝器入口水溫--30.0°C
10
空調設備說明-水泵
11
空調設備說明-水泵 1.水泵的性能曲線--性能量測:
12
空調設備說明-水泵 2.水泵性能曲線圖: H1=45ft Q1=100gpm 100gpm@45ft 水泵操作點
bhp=2 eff.=68% H1=45ft Q1=100gpm
13
空調設備說明-空氣調節箱
14
空調設備說明-空氣調節箱 調節室內之溫度。 調節室內之相對溼度。 過濾室內空氣之微塵粒仔。 引入適量之新鮮外氣。
1.空氣調節箱之功能: 調節室內之溫度。 調節室內之相對溼度。 過濾室內空氣之微塵粒仔。 引入適量之新鮮外氣。 強制輸送處理後之空氣,均勻分佈於室內。
15
空調設備說明-空氣調節箱 O.A M.A S.A R.A ADP
16
空調設備說明-冷卻水塔 2018/12/5
17
空調設備說明-冷卻水塔 1.冷卻水塔之功能: 冷卻水塔是以水為循環冷卻劑,製造冷卻水使其為可循環使用的設備。
冷卻水從需要廢熱處理的系統中(如熱交換器),吸熱升溫為熱水之後再回流至冷卻塔。 回流至冷卻塔之熱水,與塔內移動空氣接觸產生熱交換,藉著水的蒸發,水蒸汽與空氣混合為溼熱空氣排放於大氣,以此使未被蒸發的水降溫。 降溫後的冷卻水,再回流至熱交換器繼續循環使用。 冷卻水塔之冷卻能量與安裝處所之外氣溼球溫度有關。
18
空調設備說明-冷卻水塔 2.冷卻水塔趨近溫度之影響: 100 274 246 wbt=83F Chr=90F Approach temp.
LRC-100冷卻水量=274gpm wbt=84F =6F LRC-100冷卻水量=246gpm 2.冷卻水塔趨近溫度之影響: 83°F 84°F
19
空調設備說明-膨脹水箱
20
空調設備說明-膨脹水箱 1.膨脹水箱之功能: 水溫上升時,水的體積會膨漲,整個管線系統產生更大壓力,而產生安全問題,膨漲水箱可吸收管線內上升之水壓。 水溫下降時,水的體積會縮收,膨漲水箱內的水立刻補充到管線上,以保持管線上的水壓穩定。 膨脹水箱可以有效吸收水溫變化所導致的管內壓力反應,以及水鎚效應。 膨脹水箱提供一個空間,收集系統內之空氣再加以排除。 膨脹水箱提供系統一個等壓點。(相似於電路之系統接地)
21
空調設備說明-風機
22
空調設備說明-風機 1.風機性能曲線--單一轉速-2 壓力峰值左側為失速區Surge Area, 不能選取。
效率好的區域約在壓力峰值的 50%上下。 ½靜壓峰值 效率好的區域 失速區
23
儲冰空調系統 一.儲冰系統緣起: 能源的供需失衡,導致能源價格提高。 經濟學法則,開源節流。 空調節能方案:
變頻變流量系統(VWV)(變頻器VFD應用) 變頻變風量系統(VAV) (變頻器VFD應用) 熱泵、熱回收系統 全熱交換器系統 儲冰系統
24
儲冰空調系統 二.儲冰系統的負荷移轉功能-1 AM 6:00 PM 12:00 空調負荷耗電 泵耗電 通風設備耗電 照明耗電 基本耗電
1480 kW尖峰耗電
25
儲冰空調系統 二.儲冰系統的負荷移轉功能-2 AM 6:00 PM 12:00 儲冰供應 空調負荷 泵耗電 通風設備耗電 照明耗電 基本耗電
應空調 負荷 560 kW耗電移轉 920 kW尖峰耗電
26
儲冰空調系統 三.儲冰系統之推廣條件: 製冰機/滷水機需操作於較低之蒸發溫度(Evaporating temp.)
條件下,導致主機較為耗電。 由於電力公司基於發電設施之負載管理需要,電價訂定有時間 電價,獎勵用戶於離峰時段用電,用戶可負擔較少之電費。 政府基於能源政策,對峰時段用電之儲冰系統,訂有租稅優惠 及其他獎勵。 儲冰系統設備投資之回收年限,取決於電力公司之電價結構: 1).尖、離峰時段長短比。 2).尖、離峰時段電價差。
27
儲冰空調系統 四.電力業之作法-1-負載端之尖離峰差距:
28
儲冰空調系統 四.電力業之作法-2-發電端之尖離峰差距: 電 力 負 載 Time of day 水庫、抽蓄發電 天然氣、汽渦輪 汽電共生
Time of day 核能、煤、油、水庫、天然氣、汽電共生 燃煤 燃油 汽電共生 天然氣、汽渦輪 水庫、抽蓄發電 抽蓄負載 電 力 負 載
29
儲冰空調系統 方 法 目 的 四.電力業之作法-3-負載管理之方法: (與儲冰相關): 時間電價 季節電價 可停電力 即時電價 儲能系統
………… 抑低尖峰負載 提高離峰負載 轉移尖峰負載 方 法 目 的
30
儲冰空調系統 四.電力業之作法-4-採用時間電價:
31
儲冰空調系統 五.政府公部門對儲冰系統的獎勵-1: 可降低契約容量,節省相關之容量費用:
節省新(增)設線路補助費高壓用電每瓩1,759元,低壓用電每瓩2,199元。 節省基本電費,高壓用電每瓩每年2,230元,低壓用電每瓩每年2,330元。 減少電力相關設施費用。 節省空調用電之流動電費: 離峰用電優惠,儲冰空調系統再以六折優惠。
32
儲冰空調系統 五.政府公部門對儲冰系統的獎勵-2: 加速折舊(依據「促進產業升級條例」第5條、施行細則第8條)
購置節約能源之機器設備,得按2年加速折舊。 適用範圍:製程省能設備、汽電共生設備、省能公用設備、能源回收設備、省能監控設備、移轉尖峰用電設備及專為節約能源而增置或更新之部分設備且列為固定資產者。
33
儲冰空調系統 五.政府公部門對儲冰系統的獎勵-3: 投資抵減(依據「促進產業升級條例」第6條)
為促進產業升級需要,公司得在下列用途(投資於節約能源之設備或技術)項下支出金額百分之五至百分之二十限度內,自當年度起五年內抵減各年度應納營利事業所得稅額。 能源局訂定「公司購置節約能源或利用新及淨潔能源設備或技術適用投資抵減辦法」。 優惠貸款(依據「促進產業升級條例」第21條) 行政院應設置開發基金,為下列各款之運用:配合國家永續發展政策,辦理融資貸款輔導產業節約能源等有關之計畫。
34
儲冰空調系統 六.用戶端的選擇-1-電力費用計算: 電力費用 = 基本電費 + 流動電費 + 功率因數改善 + 超約罰款
35
儲冰空調系統 六.用戶端的選擇-2-基本電費之尖離峰比:
1.尖峰時間:每天07:30~22:30。離峰時間:每天22:30~24:00及00:00~07:30。 2.夏月:每年6月1日至9月30日。非夏月:每年夏月以外時間。 3.儲冷式空調系統,其離峰時間用電之流動電費按適用電價60%計收。
36
儲冰空調系統 六.用戶端的選擇-3-流動電費之尖離峰比:
1.尖峰時間:每天07:30~22:30。離峰時間:每天22:30~24:00及00:00~07:30。 2.夏月:每年6月1日至9月30日。非夏月:每年夏月以外時間。 3.儲冷式空調系統,其離峰時間用電之流動電費按適用電價60%計收。
37
cooling load, % of design
儲冰空調系統 六.用戶端的選擇-4-尖離峰之時間比: 25 50 75 cooling load, % of design 100 midnight 6 a.m. noon 6 p.m. off peak on peak
38
cooling load, % of design
儲冰空調系統 六.用戶端的選擇-5-系統-一般空調系統: *** (冰水機運轉於尖峰高費率時段)*** 25 50 75 cooling load, % of design 100 midnight 6 a.m. noon 6 p.m. Chiller off peak on peak Chiller capacity Ice storage systems lower monthly utility costs by melting ice to satisfy building cooling loads during the on-peak period. This avoids, or significantly reduces, the electricity required to operate the chiller during that time frame. The operation of the chiller is shifted to the off-peak period, during which the cost of electricity is lower and the demand charge is lower or non-existent. The chiller is used during that period to freeze the water inside the storage tanks, storing the thermal energy until the on-peak period. In this example, the building cooling loads that occur during the on-peak period, which occurs between noon and 8 p.m., are satisfied by melting the stored ice, and the chiller is turned off. This type of system, often called a “full-storage system,” is only possible if the storage capacity of the tanks is large enough to satisfy the on-peak cooling loads for the given day.
39
cooling load, % of design
儲冰空調系統 六.用戶端的選擇-6-系統-全量儲存系統 *** (冰水機運轉於離峰低費率時段)*** 25 50 75 cooling load, % of design 100 make ice midnight 6 a.m. noon 6 p.m. melt ice off peak on peak Ice making chiller capacity Ice storage systems lower monthly utility costs by melting ice to satisfy building cooling loads during the on-peak period. This avoids, or significantly reduces, the electricity required to operate the chiller during that time frame. The operation of the chiller is shifted to the off-peak period, during which the cost of electricity is lower and the demand charge is lower or non-existent. The chiller is used during that period to freeze the water inside the storage tanks, storing the thermal energy until the on-peak period. In this example, the building cooling loads that occur during the on-peak period, which occurs between noon and 8 p.m., are satisfied by melting the stored ice, and the chiller is turned off. This type of system, often called a “full-storage system,” is only possible if the storage capacity of the tanks is large enough to satisfy the on-peak cooling loads for the given day.
40
cooling load, % of design
儲冰空調系統 六.用戶端的選擇-7-系統-分量儲存系統 *** (冰水機部份運轉於離峰低費率時段)*** 25 50 75 cooling load, % of design 100 chiller make ice melt ice midnight 6 a.m. noon 6 p.m. off peak on peak Chiller capacity
41
儲冰空調系統 七.儲冰系統的優勢: 降低電力費用(Lower utility costs) 降低尖峰時段之流動電費 降低尖峰時段之基本電費
降低設備規模(Smaller equipment size) 較小之冰水機及安裝費用 較小之配電設備及安裝費用 較小之設備機房空間 獲得低溫送水及低溫送風之可能性 獲得政府及電力公司之激勵或折扣(Rebates or incentives) .
42
cooling load, % of design
儲冰空調系統 七.儲冰系統的優勢-1-降低電力費用: 100 75 melt ice melt ice cooling load, % of design 50 make ice make ice 25 chiller chiller At first glance, it might appear that an ice storage system designed to reduce on-peak electrical demand (kW) is the same as a system designed to reduce on-peak electrical consumption (kWh). Which of the two is most important, however, can significantly change how the system is designed and/or controlled. To reduce the on-peak demand, the system should melt ice only when the electrical demand of the building is highest. It is perfectly acceptable to have ice remaining inside the tank at the end of the day. This approach, called “peak shaving,” is commonly used when the on-peak electrical demand (kW) rate is high, but the electrical consumption (kWh) rates are nearly equal from off-peak to on-peak periods. Peak shaving attempts to find the optimum balance between reducing on-peak electrical demand, by melting ice and operating the chiller at reduced capacity, and avoiding significantly increasing off-peak electrical consumption (which happens when the chiller needs to operate in ice-making mode). Alternatively, to reduce on-peak electrical consumption, the system should melt as much ice as possible every day. This approach, called “load shifting,” is commonly used when the on-peak electrical consumption (kWh) rate is significantly higher than the off-peak consumption rate. Load shifting attempts to reduce on-peak electrical consumption as much as possible by melting all of the ice during the on-peak period, and shifting chiller operation to the off-peak period. While it is possible that a system designed for peak shaving may have the same ice storage capacity as a system designed for load shifting, these two systems are controlled differently. midnight 6 a.m. noon 6 p.m. midnight midnight 6 a.m. noon 6 p.m. midnight peak shaving (降低尖峰時段之用電需量) load shifting (降低尖峰時段之用電度數)
43
cooling load, % of design
儲冰空調系統 七.儲冰系統的優勢-2-降低設備規模: 100 chiller capacity melt ice 75 chiller capacity cooling load, % of design 50 chiller make ice chiller 25 In addition to lowering monthly utility costs, another potential benefit of ice storage is to reduce the size and capacity of mechanical cooling equipment. When ice storage is used to satisfy all or part of the design (or worst-case) cooling load, the chiller may be able to be downsized as long as the downsized chiller has sufficient time to re-freeze the water inside the tanks. Smaller, electrically driven chillers may also result in smaller electrical service to the building, which can also reduce installed cost. midnight 6 a.m. noon 6 p.m. midnight midnight 6 a.m. noon 6 p.m. midnight full-sized chiller downsized chiller (一般冰水機容量) (儲冰冰水機容量)
Similar presentations