Presentation is loading. Please wait.

Presentation is loading. Please wait.

Data Mining 資料探勘 Introduction to Data Mining Min-Yuh Day 戴敏育

Similar presentations


Presentation on theme: "Data Mining 資料探勘 Introduction to Data Mining Min-Yuh Day 戴敏育"— Presentation transcript:

1 Data Mining 資料探勘 Introduction to Data Mining Min-Yuh Day 戴敏育
1002DM01 MI4 Thu. 9,10 (16:10-18:00) B513 Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management, Tamkang University 淡江大學 資訊管理學系 tku.edu.tw/myday/

2 課程資訊 課程名稱:資料探勘 (Data Mining) 授課教師:戴敏育 (Min-Yuh Day) 開課系級:資管四 (MI4)
開課資料:選修 單學期 2學分 上課時間:週四 9,10 (Thu 16:10-18:00) 上課教室:B513

3 Data Mining at the Intersection of Many Disciplines
Source: Turban et al. (2011), Decision Support and Business Intelligence Systems

4 Knowledge Discovery (KDD) Process
Data mining: core of knowledge discovery process Pattern Evaluation Data Mining Task-relevant Data Data Warehouse Selection Data Cleaning Data Integration Databases Source: Han & Kamber (2006)

5 Data Warehouse Data Mining and Business Intelligence
Increasing potential to support business decisions End User Decision Making Data Presentation Business Analyst Visualization Techniques Data Mining Data Analyst Information Discovery Data Exploration Statistical Summary, Querying, and Reporting Data Preprocessing/Integration, Data Warehouses DBA Data Sources Paper, Files, Web documents, Scientific experiments, Database Systems Source: Han & Kamber (2006)

6 Business Pressures–Responses–Support Model
Source: Turban et al. (2011), Decision Support and Business Intelligence Systems

7 課程簡介 本課程介紹資料探勘 (Data Mining) 的基礎概念及應用技術。 課程內容包括 資料探勘導論、 關連分析、 分類與預測、
分群分析、 資料探勘個案分析與實作、 文字探勘與網頁探勘、 社會網路分析、 意見分析。

8 Course Introduction This course introduces the fundamental concepts and applications technology of data mining. Topics include Introduction to Data Mining, Association Analysis, Classification and Prediction, Cluster Analysis, Case Study and Implementation of Data Mining, Text and Web Mining, Social Network Analysis, Opinion Mining

9 課程目標 瞭解及應用資料探勘基本概念與技術。

10 課程大綱 (Syllabus) 週次 日期 內容(Subject/Topics) 1 101/02/16 資料探勘導論 (Introduction to Data Mining) 2 101/02/23 關連分析 (Association Analysis) 3 101/03/01 分類與預測 (Classification and Prediction) 4 101/03/08 分群分析 (Cluster Analysis) 5 101/03/15 個案分析與實作一 (分群分析): Banking Segmentation (Cluster Analysis – KMeans) 6 101/03/22 個案分析與實作二 (關連分析): Web Site Usage Associations ( Association Analysis) 7 101/03/29 個案分析與實作三 (決策樹、模型評估): Enrollment Management Case Study (Decision Tree, Model Evaluation)

11 課程大綱 (Syllabus) 週次 日期 內容(Subject/Topics) 8 101/04/05 教學行政觀摩日 (--No Class--) 9 101/04/12 期中報告 (Midterm Presentation) /04/19 期中考試週 /04/26 個案分析與實作四 (迴歸分析、類神經網路): Credit Risk Case Study (Regression Analysis, Artificial Neural Network) /05/03 文字探勘與網頁探勘 (Text and Web Mining) /05/10 社會網路分析、意見分析 (Social Network Analysis, Opinion Mining) /05/17 期末專題報告 (Term Project Presentation) /05/24 畢業考試週

12 教學目標之教學方法與評量方法 教學目標 教學方法 評量方法 瞭解及應用資料探勘基本概念與技術。 講述、討論、模擬、實作、問題解決
實作、報告、上課表現

13 Objective Students will be able to understand and apply the fundamental concepts and technology of data mining.

14 教材課本 講義 (Slides) 參考書籍 Decision Support and Business Intelligence Systems, Ninth Edition, Efraim Turban, Ramesh Sharda, Dursun Delen, 2011, Pearson Applied Analytics Using SAS Enterprise Mining, Jim Georges, Jeff Thompson and Chip Wells, 2010, SAS Data Mining: Practical Machine Learning Tools and Techniques, Third Edition, Ian H. Witten, Eibe Frank, and Mark A. Hall, Morgan Kaufmann, 2011. Data Mining: Concepts and Techniques, Second Edition, Jiawei Han and Micheline Kamber, 2006, Elsevier 決策支援與企業智慧系統,九版,Efraim Turban 等著,李昇暾審定,2011,華泰 資料探勘:概念與方法,王派洲 譯,2008,滄海 資料探勘,曾憲雄、蔡秀滿、蘇東興、曾秋蓉、王慶堯,2008,旗標 SQL Server 2008 R2 資料採礦與商業智慧,謝邦昌、鄭宇庭、蘇志雄,2011,碁峯 資料採掘:理論與實務規劃手冊,孫惠民,2007,松崗 Web 資料採掘技術經典,孫惠民,2008,松崗

15 作業與學期成績計算方式 批改作業篇數 學期成績計算方式 2篇(Team Term Project) 期中評量:30 % (期中報告)
期中評量:30 % (期中報告) 期末評量:30 % (期末報告) 其他(課堂參與及報告討論表現): 40 %

16 Team Term Project Term Project Topics 3-5 人為一組 Data mining
Business Intelligence Text mining Web mining Social Network Analysis 3-5 人為一組 分組名單於 (四) 課程下課時繳交 由班代統一收集協調分組名單

17 A Taxonomy for Data Mining Tasks
Source: Turban et al. (2011), Decision Support and Business Intelligence Systems

18 The Evolution of BI Capabilities
Source: Turban et al. (2011), Decision Support and Business Intelligence Systems

19 A High-Level Architecture of BI
Source: Turban et al. (2011), Decision Support and Business Intelligence Systems

20 Social Network Analysis
Source:

21 Text Mining Source:

22 Web Mining and Social Networking
Source:

23 Mining the Social Web: Analyzing Data from Facebook, Twitter, LinkedIn, and Other Social Media Sites
Source:

24 Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data
Source:

25 Contact Information 戴敏育 博士 (Min-Yuh Day, Ph.D.) 專任助理教授 淡江大學 資訊管理學系 電話: #2347 傳真: 研究室:i716 (覺生綜合大樓) 地址: 新北市淡水區英專路151號 : 網址:


Download ppt "Data Mining 資料探勘 Introduction to Data Mining Min-Yuh Day 戴敏育"

Similar presentations


Ads by Google