Presentation is loading. Please wait.

Presentation is loading. Please wait.

贾宇 (on behalf of 吕才典) 国际创新海外团队,院前沿重点项目暨所创新团队2016年联合年会 Nov. 18, 2016

Similar presentations


Presentation on theme: "贾宇 (on behalf of 吕才典) 国际创新海外团队,院前沿重点项目暨所创新团队2016年联合年会 Nov. 18, 2016"— Presentation transcript:

1 贾宇 (on behalf of 吕才典) 国际创新海外团队,院前沿重点项目暨所创新团队2016年联合年会 Nov. 18, 2016
CEPC上的2016年理论物理进展 贾宇 (on behalf of 吕才典) 国际创新海外团队,院前沿重点项目暨所创新团队2016年联合年会 Nov. 18, 2016

2 Constraining Natural SUSY @ HL-LHC, ILC & CEPC by 王科臣
Using Muon Magnetic Moment & Higgs Coupling; “Constraining Natural SUSY using the Higgs Coupling and Muon Magnetic Moment Measurements” 王科臣 PRD93 (2016)  Basic constraints: REWSB, neutralino LSP, sparticle mass, Higgs mass, B-physics, fine-tuning.  Muon magnetic moment  Higgs coupling

3 The Zbb couplings at future e^+ e^− colliders.
S. Gori, J. Gu and L.T. Wang, JHEP 1604, 062 (2016)

4

5

6 Sterile Neutrino Search @ LHC & CEPC
Distinguishing Majorana and Dirac Using Kinematical Distributions C.O. Dib, C.S. Kim, Kechen Wang and J. Zhang, PRD94, (2016) LNV: LNC:

7 Angular Asymmetry in HZ Production @ CEPC
To Constraining New Physics; “Beyond Higgs Couplings: Probing the Higgs with Angular Observables at Future e+e- Colliders”, Nathaniel Craig, Jiayin Gu, Zhen Liu and Kechen Wang, JHEP 1603 (2016) 050 王科臣 顾嘉荫

8 Angular Asymmetry in HZ Production @ CEPC
To Constraining New Physics; “Beyond Higgs Couplings: Probing the Higgs with Angular Observables at Future e+e- Colliders”, Nathaniel Craig, Jiayin Gu, Zhen Liu and Kechen Wang, JHEP 1603 (2016) 050

9 Progress in lattice QCD study(by 刘朝峰) CEPC is also a flavor factory
CEPC上的 𝑫 𝟎 / 𝑫 ± /Ds/ 𝑫 ∗± 的事例: 𝑶( 𝟏𝟎 𝟗 ) (Pre-CDR,瞬时亮度𝟏× 𝟏𝟎 𝟑𝟓 𝒄𝒎 −𝟐 𝒔 −𝟏 ,Z-pole上运行一年,两个对撞点) ~𝟑× 𝟏𝟎 𝟗 个 𝜦 𝒄 (Pre-CDR,Z-pole上运行两年), 比super-tau-charm以及super-B多很多 (PDG2016: 𝒁 𝟎 → 𝚲 𝒄 𝑿, 1.54(33)%)

10 Flavor physics and LQCD
LQCD can calculate form factors and meson decay constants appearing in weak decays of hadrons. Combined with experiments, they can give us CKM matrix elements. Test the SM (is CKM unitary?). Or use 𝑽 𝒂𝒃 to compare QCD/SM results with experiments. 𝑽 𝒖𝒅 𝑽 𝒖𝒔 𝑽 𝒖𝒃 𝑽 𝒄𝒅 𝑽 𝒄𝒔 𝑽 𝒄𝒃 𝑽 𝒕𝒅 𝑽 𝒕𝒔 𝑽 𝒕𝒃 Can be calculated by LQCD 例如:

11 Rare decays 𝒃→𝒅, 𝒃→𝒔 FCNC processes are forbidden at tree level in the SM, sensitive to possible new physics 𝑩→ 𝑲 ∗ 𝜸, 𝑩→ 𝑲 (∗) 𝒍 + 𝒍 − , 𝑩 𝒔 →𝝓𝜸, 𝑩 𝒔 →𝝓 𝒍 + 𝒍 − , 𝑩 𝒔 → 𝑲 ∗𝟎 𝒍 + 𝒍 − , 𝑩→𝝅 𝒍 + 𝒍 −

12 𝑩→ 𝑲 ∗ 𝝁 + 𝝁 − , 𝑩 𝒔 →𝝓 𝝁 + 𝝁 − observables
𝑩→ 𝑲 ∗ 𝒍 + 𝒍 − , 𝑩 𝒔 →𝝓 𝒍 + 𝒍 − , 𝑩 𝒔 → 𝑲 ∗𝟎 𝒍 + 𝒍 − : 2+1-flavors, first unquenched calculation of all 7 form factors. R. Horgan, Zhaofeng Liu et al. PRD89,094501(2014), PRL112,212003(2014), PoSLAT2014 (2015) 372 Theory versus experiment at 𝒒 𝟐 >𝟏𝟒.𝟏𝟖 𝐆𝐞𝐕 𝟐 Deviations are also seen in 𝑺 𝟑 , 𝑺 𝟒 and 𝑷 𝟒 ′ Two parameter global fit gives 𝑪 𝟗 𝑵𝑷 =−𝟏.𝟏±𝟎.𝟓, 𝑪 𝟗 ′ =𝟏.𝟐±𝟎.𝟗 One uncontrolled approximation is that the vector meson final state is stable in our calculation. The scattering states K\pi are not included in the analysis. The threshold effects are assumed to be small. Angular observables: S_i: Normalized CP averages of the angular coefficients. P_i: designed to reduce hadronic uncertainties at low q^2. The analysis of the Fermilab lattice and MILC Collaborations on B to K and B to pi rare decays [PRD93_034005(2016)] also find that the partially integrated branching fractions outside the charmonium resonance region are 1-2sigma higher than the LHCb measurement.

13 𝒇 𝑫 𝒔 𝑵 𝒇 =𝟐+𝟏: 𝒇 𝑫 𝒔 =𝟐𝟒𝟗.𝟖(𝟐.𝟑)MeV 𝑵 𝒇 =𝟐+𝟏+𝟏:
Zhaofeng Liu et al., PRD90, 2014 Y.-B. Yang,…, ZL et al., PRD92, 2015 𝒇 𝑫 𝒔 𝑵 𝒇 =𝟐+𝟏: 𝒇 𝑫 𝒔 =𝟐𝟒𝟗.𝟖(𝟐.𝟑)MeV 𝑵 𝒇 =𝟐+𝟏+𝟏: 𝒇 𝑫 𝒔 =𝟐𝟒𝟖.𝟖𝟑(𝟏.𝟐𝟕)MeV PDG2016 (CPC40): 𝒇 𝑫 𝒔 + 𝒆𝒙𝒑 =𝟐𝟓𝟕.𝟖(𝟒.𝟏) MeV 格点结果与实验在𝟐𝝈之内一致 2020年实验精度将与理论持平(BESIII和BelleII) FLAG2016, arXiv:

14 物理夸克质量点上的格点计算(正在进行) Working on a lattice (from RBC-UKQCD Collaborations) with almost physical pion mass: 𝑴 𝝅 (𝐬𝐞𝐚) =𝟏𝟑𝟗.𝟐(𝟒) MeV 𝑳 𝟑 ×𝑻= 𝟒𝟖 𝟑 ×𝟗𝟔 𝑳𝒂~𝟓.𝟓 fm 夸克双线性算符重整化常数(用于强子矩阵元的计算) 𝝍 𝜞𝝍,𝜞=𝑰, 𝜸 𝟓 , 𝜸 𝝁 , 𝜸 𝝁 𝜸 𝟓 , 𝝈 𝝁𝝂 介子衰变常数 计划: 𝜦 𝒄 的半轻衰变, | 𝑽 𝒄𝒔 |

15 重整化常数( 𝒁 𝑨 , 𝒁 𝑺 初步结果) 使用三种动量减除方案(检查系统误差),再转换到常用的 𝐌𝐒 方案

16 孙庆峰,冯峰,贾宇,桑文龙 arXiv:1609.03995[hep-ph]
孙庆峰,冯峰,贾宇,桑文龙 arXiv: [hep-ph]

17 Motivations CEPC can measure production cross section for σ(ZH) to an exquisite precision of 0.51% Knowing the NLO EW correction (a few percent) is not sufficient to meet experimental precision! O(α2) and O(ααs) correction need be considered. We will investigate the latter, which should be much dominant

18

19

20 arXiv: Collaborators: 冯锋(中国矿大),桑文龙(西南大学),孙庆峰(中科大)。

21 Similar results from different group by 李钊,杨李林 et al.
arXiv: Yinqiang Gong, Zhao Li, Xiaofeng Xu, Li Lin Yang

22 Typical Feynman diagrams for eeZ vertex, self-energy and ZZH vertex.

23

24 (Un)Polarized differential cross sections:

25

26 Summary and Outlook

27 谢谢!


Download ppt "贾宇 (on behalf of 吕才典) 国际创新海外团队,院前沿重点项目暨所创新团队2016年联合年会 Nov. 18, 2016"

Similar presentations


Ads by Google