Presentation is loading. Please wait.

Presentation is loading. Please wait.

免疫基因重排的调控机制 指导教师:张义正 教授 程在全 刘广超 董兆勇.

Similar presentations


Presentation on theme: "免疫基因重排的调控机制 指导教师:张义正 教授 程在全 刘广超 董兆勇."— Presentation transcript:

1 免疫基因重排的调控机制 指导教师:张义正 教授 程在全 刘广超 董兆勇

2 一、免疫球蛋白的分子结构 二、免疫球蛋白基因的分子结构 三、免疫基因的重排 四、免疫基因重排的调控机制

3 一、 Ig分子的结构 (一)Ig分子的基本结构--四链结构单位 不同类别的Ig都含有4条肽链组成的基本结构单位:   2条相同而Mr较大的重链(H链)和2条相同而Mr较小的轻链(L链);   重链和轻链之间以及重链及重链和重链之间均借链间二硫键共价结合,加上分子内的非共价键维系成整个稳定的Ig分子结构。在重链上尚结合着糖链,故Ig又属于糖蛋白。   免疫球蛋白分子以四链结构为基本单位通过共价键进一步形成多聚体。

4

5 (二)结构域和功能区   根据Ig分子中轻链和重链一级结构的氨基酸序列差异,它们各自可分成可变区(V区)和恒定区(C区),V 区中的氨基酸序列高度变异,而C区中的氨基酸序列却基本恒定。V区和C区在其三级结构上均保持相对独立性,它们各自通过一个链内二硫键形成一个肽环,肽环内含有60-70个氨基酸残基,每一肽环又与其周围肽段紧密折叠成球状的结构域,结构域内含有 个氨基酸残基。   轻链有2个结构域,即VL和CL2个结构域。重链有4-5条链内二硫键,分别组成4-5个结构域即VH、CH1、CH2、CH3和CH4。

6   在VL和VH中的氨基酸序列按最大同源性(即在各位置上尽可能多的相同残基排列着,并留出一些缺失或插入肽段)排列,发现它们之间有一定的同源性。重链中的CH1、CH2、CH3和CH4等结构域之间有高度的同源性,而它们又与CL同源。因此,结构域又称为同源区,这种同源性反映了Ig分子在进化起源上的关联。   不同链之间的同源区在空间通过疏水作用可进一步折叠成更为紧密的结构,并具有一定的免疫学功能,称为功能区,如VH和VL组成V功能区,它与相应抗原的决定簇发生特异性结合。

7 (三)轻链和重链 1.轻链   轻链是一条由213或214个氨基酸残基组成的多肽链,Mr为22000,每条轻链含有2个结构域,即VL和CL。不同轻链的氨基酸序列从N端的1-109位残基(VL)各不相同,而从 位残基(CL)则基本相同。根据各类轻链C区的抗原性不同而可分为两型,即κ型( κ 链)和λ型( λ链 )。单个Ig分子中的两条轻链总是同型的,至今还未发现同一Ig分子中的两条轻链是不同型的。

8 2.重链   重链是一条由446个氨基酸残基组成的多肽链,Mr为 ,每条重链含有4-5个结构域,以VH、CH1、CH2、CH3和CH4表示。与轻链相似,不同的重链,从N羰起含有120个左右氨基酸残基(VH),其序列差异性较大;而第120位残基以后肽链(CH)中的氨基酸序列基本恒定。根据Ig重链C区的氨基酸组成差异性以及抗原性的不同可将重链分成5类,以γ、α、μ、δ和ε表示,它们分别为IgG、IgA、IgM、IgD和IgE的重链。

9 (四)铰链区   在Ig重链CH1与CH2之间有一段较长肽链,这一区段称为铰链区,区域内富含Cys和Pro残基,因此重链的链间二硫键 大多集中在此区域内。由于Pro结构的特性,它在多肽链的折叠过程中很难形成α螺旋和β折叠所需的氢键,因此在铰链区内的肽链易于弯曲,可呈自由伸展,有相当的柔性,与酶接触则易于水解,因此铰链区又是酶解的敏感部位。

10 二、免疫球蛋白基因 (一)免疫球蛋白的轻链基因 (二)免疫球蛋白的重链基因

11 (一)免疫球蛋白的轻链基因 1.小鼠κ轻链基因鼠:
  小鼠κ轻链基因位于染色体6C2,在种系细胞和胚胎细胞中只含有一种编码κ链C区的Cκ外显子,但含有大量的编码V区的Vκ基因片段, Vκ基因片段约有250个,它编码V区中第1-95、96位氨基酸。另有一种称为连接片段的Jκ基因是编码第95、96-110位氨基酸,小鼠κ链的5种Jκ基因( Jκ1- Jκ5 )中, Jκ3是假基因,它是一种不完全基因,不能合成功能性蛋白质,其余的Jκ基因均为功能性基因。在染色体中的大量Vκ基因片段相继排列成簇, Jκ基因也前后排列成簇,但在Vκ基因和Jκ基因之间被内含子序列所分隔(图2)。

12 2.人的κ轻链基因   人的κ轻链基因与小鼠相似,它位于染色体2p12。Vκ基因片段约有100个,Jκ基因片段有5个,在胚胎细胞分化成浆细胞过程中可发生Vκ和Jκ重排,连接成VJ基因片段(如V3与J2相边成V3J2基因片段),它编码κ链V区,在浆细胞DNA转录入核RNA时,通过核RNA剪接,VJ基因片段和C基因片段相边成mRNA,翻译成κ链(图3)

13 3.小鼠和人类的λ轻链基因   小鼠和人类的λ轻链基因分别位于染色体16和22q11,DNA编码λ链与κ链一样,也分成3种基因片段即Vλ、Jλ和Cλ基因片段。小鼠Vλ基因片段有2个, Jλ基因片段有3个;而人类Vλ基因片段有10个, Jλ基因片段有6个, Jλ和Vλ基因片段用于编码V区, Cλ基因片段编码C区。在小鼠中与其Vλ基因片段相比,由于Vλ基因片段只有两种,因此通过基因重排后所产生的λ链数目远比κ链少,故小鼠的轻链仅5%是λ型的。其次在小鼠的λ链基因中又有一特点,即2种Vλ基因与4种Jλ基因并非在染色体的两个分离区中各自组合,而是每种V基因片段与2种Jλ-Cλ基因片段相连如Vλ1与Jλ3Cλ3和Jλ1Cλ1相连(图2)

14

15 (二)免疫球蛋白的重链基因   种系细胞中重链V区基因由V、D和J基因片段组成,重链的同种型C区基因是一串排列成簇并位于染色体的分隔区中,处于V基因片段的下游。人和小鼠的重链基因分别位于染色体14q32和12F1。在染色体中的V区基因片段VH和JH也是有次序地排列成簇。小鼠有 个VH基因片段,人类有 个VH基因片段,它们编码N端98个氨基酸,包括超变区H1和H2。小鼠有10个DH基因片段,而人类约有20个DH,DH基因片段可编码V区中第3个超变区H3,它位于基因组DNA中VH簇和JH簇之间。DH基因片段是由它的序列变异性和长度所决定,可编码12-15个氨基酸。JH基因片段也成簇排列,它位于DH基因片段下游和C区基因片段上游的7kb处。小鼠有4个V区中最后16-21个氨基酸,因此产生一个重链V区的功能性基因必须从VH、DH和JH等基因系中各选择一成员共同连接组成。

16

17   每条重链的同种型基因是从JH基因片段起沿着染色体下游有序地排列,小鼠中每个基因之间相隔的DNA为200kb,人类中CH基因组成与小鼠相似,但有几处是重复出现并具有Cψε和Cφγ两个假基因(图4)。编码μ和δ的C区基因位于JH片段邻近,而处在Cδ下游的是γ链的各同种型C区基因,接着为ε和/或α链。Ig重链C区一般有3-4个结构域,如IgG、IgA与IgD的CH有3个,而IgM和IgE各有4个,每一个结构域由分隔的外显子编码(图5),如μ链由4个外显子分别编码4个结构域。此外,各同种型中所含有铰链区的位置也不相同,如Cγ中的铰区是由第1与第2结构域之间被分隔开的外显子所编码,也有的是在第2结构域起始处的外显子编码。因此免疫球蛋白重链C区在DNA的外显子内含子结构和蛋白质结构域的结构之间存在着精确的关系。

18 三、基因重排 (一)V区基因重排 (二)12-36bp规则 (三)茎环结构 (四)重链的类别转换 (五)重链VDJ和轻链VJ片段的重组连接
(六)连接的多样性

19 (一)V区基因重排   Ig基因均保留着各自的种系构型,如重链和轻链的V区均来自每一基因库中的多基因片段。单一基因处段经过选择性编码,并由DNA重排组成功能性基因(图6)   在B淋巴细胞分化期间,重链基因首选组合,并分成两个阶段进行重排,第一阶段为DH与JH基因连接,第二阶段才是DH-JH与VH基因片段连接。若在一染色体上的VH-DH-JH片段重排成功,则另一染色体上重链V区基因片段的重排即被抑制,同时激发轻链V区基因重排;若重链基因重排失败,则试图在第2个染色体上进行成功的重排(即等位基因排除现象)。 返回

20

21 (二)12-36bp规则   1983年Tonegawa研究了基因片段的核苷酸序列,发现在每一个VH和VL基因片段下游和每一个JH和JL片段上游,以及每一个DH片段两边均存在着一个特殊的保守序列(图7)。第一个保守序列是J基因3’端的7个核苷酸组成的七聚体GTGTCAC,它恰与V基因片段5‘端的七聚体CACAGTG相互补。第2个保守序列是从J基因片段3’端的七聚体起相隔23个无规则序列的核苷酸后出现的九聚体TGTTTTTGG,它与V基因片段上七聚体的5‘端起相隔12核苷酸的九聚体ACAAAAACC相互补(图8)。在这些保守序列之间以12+1或23+1个核苷酸相间隔的规律出现,故称为12-23规则。 返回

22 (三)茎环结构   在V基因片段下游和J基因片段上游中通过保守序列的七聚体之间和九聚体之间的互补形成茎环结构,茎状部分将经过选择的V基因片段与基因片段与J基因片段靠拢,其余的V和J基因片段位于环状部分,在重组酶作用下,切除茎环部分的V、J基因片段,重新连接V、J基因形成新的DNA序列。这一机制称为环缺失模式。 返回

23

24 (四)重链的类别转换   在B淋巴细胞发育过程中,合成的Ig类别可以变换,称为类别转换。B细胞最初表达IgM和/或IgD,然后DNA进一步重组,先重组的VHDHJH基因片段可在不同的CH基因之间转换,使B细胞经过同一抗原刺激后合成具有不同C区的各种类别Ig,并可介导不同的效应功能。

25

26

27

28

29

30 5’ Cμ-Cδ-Cγ3-Cγ1-Cγ2b-Cγ2a-Cε-Cα3’ 人的CH基因片段序列为:
   Honjo和Kataoka提出了类别转换模型假说,认为小鼠CH基因片段序列为:   5’ Cμ-Cδ-Cγ3-Cγ1-Cγ2b-Cγ2a-Cε-Cα3’ 人的CH基因片段序列为:   5’Cμ-Cδ-Cγ3-Cγ1-Cγ2-Cγ4-Cε-Cα2 3’类别转换也可用去环缺失模式解释,如在类别转换期间,DNA包含的C区(如Cμ)基因去环,使重组的VDJ序列接近新的C区VK (Cγ3),任何一个DNA插入片段(包含原来的Cμ 基因和新的Cγ3 基因之间的Cδ基因)与原来Cμ 基因一起从基因组中被切除和缺失。 返回

31 (五)重链VDJ和轻链VJ片段的重组连接
  Ig轻链和重链的V区分别由2个或3个基因片段编码,由于在种系中VH、VL、DH、JH和JL等多基因片段的存在,使一个个体可产生许多重链和轻链的V区以及它们之间的组合(表1)   每个B细胞都可从每一基因库中选择或连接成任何一基因片段,在重链V区组合装配期间由于不同的DH基因片段的插入可发生惊人的变换,故可产生各种各样的Ig分子。DH基因正是编码超变区H3,故不同的V、D和J基因片段的重组连接是Ig产生多样性的机制。 返回

32   每个B细胞都可从每一基因库中选择或连接成任何一基因片段在,在重链V区组合装配期间由于不同的DH基因片段的插入可发生惊人的变换,故可产生各种各样的Ig分子。DH基因正是编码超变区H3,故不同V、D和J基因片段的重组连接是Ig产生多样性的机制。

33 由于在DH-JH、VH-DHJH和VL-JL的交接处出现的连接方式不够明确,则可能会进一步增加Ig的多样性,如:
(六)连接的多样性   由于在DH-JH、VH-DHJH和VL-JL的交接处出现的连接方式不够明确,则可能会进一步增加Ig的多样性,如:  (1)在核苷酸密码子内的任何地方都可出现发生连接的位置,因此在两片段之间,同样两种基因片段的连接可以产生不同的氨基酸(图10(1))。  (2)在某种情况下,由于连接方式不明确可直接导致读码框(图10(2))。出现这种现象是由于连接的核苷酸在连接处可出现多至10个残基变换。在DH-JH、VH-DH连接处可出现核苷酸缺失,导致V区内氨基酸序列完全改变。有时可不产生读码框架移动,而可停止密码子或终止信号引入核苷酸序列中。 返回

34 (3)在基因片段连接过程中由于额外的核苷酸插入,增加了重链的多样性(图10(3))
因此,由于基因片段连接方式的多样性,而可产生多种多样的Ig分子。

35 四、免疫基因重排的调控机制 (Schlissel MS, Stanhope-Baker P. ,1997) Antigen receptor genes are assembled from their component gene segments by a highly regulated series of site-specific DNA recombination reactions known as V(D)J recombination. Proteins encoded by the RAG1 and RAG2 genes are responsible for the recognition and double-stranded cleavage of a highly conserved DNA sequence flanking all rearranging gene segments. It remains uncertain how this common lymphoid recombinase is targeted to distinct loci in developing B and T cells and to specific loci at successive stages of lymphocyte(淋巴细胞) development. This review considers evidence that DNA sequences which regulate the transcription of antigen receptor genes also regulate the recombination reaction by determining the accessibility of individual loci to the V(D)J recombinase.

36 (Cedar H, Bergman Y. 1999) Rearrangement of antigen(抗原) receptors in the immune system is mediated through the action of complex enhancers which function in both a developmentally stage-specific and a cell-type-specific manner to demethylate DNA, open chromatin structure and tether the recombination machinery to one preferred allele at each locus.

37 IgE antibody plays an important role in allergic diseases
IgE antibody plays an important role in allergic diseases. IgE synthesis by B cells requires two signals. The first signal is delivered by the cytokines IL-4 or IL-13, which target the Cepsilon gene for switch recombination. The second signal is delivered by interaction of the B cell surface antigen CD40 with its ligand (CD40L) expressed on activated T cells. This activates deletional switch recombination. Bacharier LB, Geha RS.(2000 )review the molecular mechanisms of IL-4 and CD40 signaling that lead to IgE isotype switching and discuss the implications for intervening to abort or suppress the IgE antibody response.

38 V(D)J recombination is required not only for receptor diversification but also for lymphocyte(淋巴细胞) development. At a molecular level, these recombination events are directed by conserved DNA sequences flanking all antigen receptor gene segments that function as recognition(识别) signals for a single recombinase activity. Despite these shared features, recombination events are controlled at the levels of stage- and tissue-specificity. Primary research focus is to dissect the mechanisms that regulate assembly of antigen receptor loci by rendering certain gene segments accessible to a common V(D)J recombinase.

39 Oltz EM.have found that transcriptional promoters are critical cis-acting regulatory elements for targeting efficient recombination of chromosomal gene segments. And have also demonstrated that activation of NF-kappaB signaling in precursor B cells is required for global regulation of Ig light chain gene assembly.

40 V(D)J recombination events within the locus are regulated as a function of developmental stage and cell lineage during T-lymphocyte(淋巴细胞) differentiation in the thymus. The process of V(D)J recombination is regulated by cis-acting elements that modulate the accessibility of chromosomal substrates to the recombinase. Krangel MS, Hernandez-Munain C and etc(1998 )evaluate how the assembly of transcription factor complexes onto enhancers, promoters and other regulatory elements within the TCR alpha/delta locus imparts developmental control to VDJ delta and VJ alpha rearrangement events. Furthermore, we develop the notion that within a complex locus such as the TCR alpha/delta locus, highly localized and region-specific control is likely to require an interplay between positive regulatory elements and blocking or boundary elements that restrict the influence of the positive elements to defined regions of the locus.

41 The joining(连接,接合) of T cell receptor (TCR) and immunoglobulin (Ig) gene segments through the process of V(D)J recombination occurs in a lineage-specific and developmental-stage-specific way during the early stages of lymphocyte(淋巴细胞) development. Such developmental regulation is thought to be mediated through the control of gene segment accessibility to the recombinase. The transcriptional enhancers Edelta and Ealpha have been implicated as critical regulators that, in conjunction with other cis-acting elements, confer region-specific and developmental-stage-specific changes in gene segment accessibility within TCR alpha/delta locus chromatin. Current work suggests that they may do so by functioning as regional modulators of histone acetylation.

42 V(D)J recombination is the process that generates the diversity among T cell receptors and is one of three mechanisms that contribute to the diversity of antibodies in the vertebrate immune system. The mechanism requires precise cutting of the DNA at segment boundaries followed by rejoining of particular pairs of the resulting termini. The imprecision of aspects of the joining reaction contributes significantly to increasing the variability of the resulting functional genes. Signal sequences target DNA recombination and must participate in a highly ordered protein-DNA complex in order to limit recombination to appropriate partners. Two proteins, RAG1 and RAG2, together form the nuclease that cleaves the DNA at the border of the signal sequences. Additional roles of these proteins in organizing the reaction complex for subsequent steps are explored.

43

44 (Kim DR, Park SJ, Oettinger MA
(Kim DR, Park SJ, Oettinger MA. )V(D)J recombination is a site-specific gene rearrangement process that contributes to the diversity of antigen receptor repertoires. Two lymphoid-specific proteins, RAG1 and RAG2, initiate this process at two recombination signal sequences. Due to the recent development of an in vitro assay for V(D)J cleavage, the mechanism of cleavage has been elucidated clearly. The RAG complex recognizes a recombination signal sequence, makes a nick at the border between signal and coding sequence, and carries out a transesterification reaction, resulting in the production of a hairpin structure at the coding sequence and DNA double-strand breaks at the signal ends. RAG1 possesses the active site of the V(D)J recombinase although RAG2 is essential for signal binding and cleavage. After DNA cleavage by the RAG complex, the broken DNA ends are rejoined by the coordinated action of DNA double-strand break repair proteins as well as the RAG complex. The junctional variability resulting from imprecise joining of the coding sequences contributes additional diversity to the antigen receptors.

45 ( Fugmann SD., 2001 )RAG1 and RAG2 are the key components of the V(D)J recombinase(重组酶) machinery that catalysesthe somatic gene rearrangements of antigen receptor genes during lymphocyte(淋巴细胞) development. In the first step of V(D)J recombination--DNA cleavage--the RAG proteins act together as an endonuclease(内切核酸酶) to excise the DNA between two individual gene segments. They are also thought to be involved in the subsequent DNA joining step. In vitro, the RAG proteins catalyze the integration of the excised DNA element into target DNA completing a process similar to bacterial transposition. In vivo, this reaction is suppressed by an unknown mechanism.

46 (Huang J, Muegge K.,2001) IL-7 is a key factor for lymphoid development, and it contributes to V(D)J recombination at multiple loci in immune-receptor genes. IL-7 signal transduction, involving gamma(c) and Jak3, is required for successful recombination at the TCR-gamma locus. IL-7 signaling controls the initiation phase of V(D)J recombination by controlling access of the V(D)J recombinase to the locus. In the absence of IL-7, the TCR-gamma locus is methylated(甲基化) and packaged in a repressed form of chromatin(染色质) consisting of hypoacetylated histones. IL-7 signaling likely increases the acetylation(乙酰化) state of the nucleosomal core histones resulting in an "open" form of chromatin. This opening leads to a higher accessibility for the transcription machinery and increased accessibility of the Rag heterodimer that performs the cleavage of DNA.

47 Molecular regulation of class switch recombination to IgE through epsilon germline transcription. (Maizels N.,2000 )A new mechanism for regulation in the immune system has been identified: a cytidine deaminase is critical for both class switch recombination and somatic hypermutation, revealing an unanticipated link between these two processes. ( Sale JE, Bemark M, Williams GT and etc,2001) Following antigen encounter, two distinct processes modify immunoglobulin genes. The variable region is diversified by somatic hypermutation while the constant region may be changed by class-switch recombination.

48 (Oettgen HC.,2000)In allergic(过敏性的) responses, B cells are driven to undergo an immunoglobulin isotype switch, shifting from IgM to IgE synthesis. This process involves the rearrangement of germline DNA in the immunoglobulin heavy-chain locus and is stimulated by cytokines (IL-4 and IL-13) and CD40 activation(激活). It is now evident that cytokine-induced 'germline' epsilon-RNA transcripts associate with DNA in the genomic switch region (S epsilon) to form DNA-RNA hybrid structures, which target nucleases in for deletional switch recombination. Alterations in cytokine production and signaling affect the efficiency of this process and are associated with inherited predisposition to allergy.

49 (Lieber M.2000) Recent work indicates that mutations in a cytidine deaminase homologue(同源的,同系的同源染色体同源生物,同种的) ablate both immunoglobulin class switch recombination and somatic hypermutation.

50 V×J(×D)连接组合重链-轻链连接组合 12000-120000 500 60
表1人免疫球蛋白各组成成分的多样性估量 返回 各基因片段 (或其组合) 重链 H 轻链 κ λ V基因 100 10 D基因 20 J基因 6 5 V×J(×D)连接组合重链-轻链连接组合 500 60 H ×κ 6 ×106-6 ×107 H ×λ 7.2 ×105- 7.2 ×106


Download ppt "免疫基因重排的调控机制 指导教师:张义正 教授 程在全 刘广超 董兆勇."

Similar presentations


Ads by Google