Download presentation
Presentation is loading. Please wait.
1
中红外天文仪器 朱青峰 天文系, USTC
2
中红外 (5.5-40m)? 红外源 地面观测窗口 星级尘埃
3
中红外源 100m, 29K 冷天体,红外星系,星云,分子云,棕矮星,行星系统. 宇宙膨胀,红移。光学→红外
4
大气透射率
5
红外大气吸收
6
星际尘埃消光 Credit: Aigen Li, U. Of Missouri Desert et al. (1990)
7
光学 vs. 红外
8
中红外科学课题 黑暗时代的终结,第一代恒星和宇宙再电离: 确定宇宙中最早的发光天体和研究其性质,并研究宇宙再电离的历史。
星系的形成: 研究星系,暗物质性质形态的演化。 恒星及行星系统的形成: 中心为恒星和行星的形成。 行星系统和生命起源: 研究太阳系内天体的物理化学性质和过程和生命组成成分的出现。
9
中红外技术 红外探测器 大规模 高量子效率(QE) 大容量 低暗流 低噪声
10
中红外技术 望远镜 高反射率镀膜 自适应光学 低背景 副镜摆动
11
中红外技术 光学 透镜/反射镜 红外透明材料 高性能反透射镀膜 滤波片
12
中红外技术 终端设备: 光栅/棱栅, 高效率 制冷设备 液氦温度技术 真空技术 流量定标,波长定标 读出电路
13
地面望远镜 Pros: Easy to maintain and upgrade
Cons: Wavelength-limited, Seeing-limited optics IRTF, 3m, 1979, US,NIR,MIR UKIRT, 3.8m, 1979, UK, NIR, MIR Keck, 2x10m, 1996, US, Optical,NIR, MIR Subaru, 8m, 1999, Japan, Optical, NIR, MIR VLT, 4x8m, 1999, Europe, Optical, NIR, MIR MMT, 6.5m, 1999, US, Optical, NIR, MIR GTC, 10.4m, 2001, Spain, Optical, NIR Gemini, 2x8m, 2001, US etc., Optical, NIR, MIR LBT, 2x8.4m, 2002, US etc., Optical, NIR, MIR Magellan, 2x6.5m, 2002, US and Chile, Optical, NIR TMT, 30m, 2018, US, Canada, Japan, China, India
14
空间望远镜 Pros: Wavelength Range, Diffraction-limited optics
Cons: Short-lifetime, limited complexity, low weight IRAS, 0.57m, 1983, US, UK and Netherlands, 12, 25, 60, 100m, 10 month ISO, 0.6m, 1995, Europe, US, Japan, m, R<3000, 2.4 yrs HST, 2.4m, 1990, US and Europe, UV-2.4m, >20 yrs Spitzer, 0.85m, 2003, US, 3-180m, R<600, >7yrs SPICA, 3.5m, 2017, Japan, 4-210m Herschel, 3.5m, 2009, Europe, US, m, expect 3yrs WISE, 0.4m, 2009,US, 3.3,4.7,12, 23m JWST, 6.6m, 2013, US, m, R=3000
15
机载望远镜 Pros: Avoiding atmospheric absorption, good resolution Cons: Limited weight and complexity, winds caused vibrations KAO, 0.915m, , US, 1-500m SOFIA, 2.5m, 2010, US, Germany, m
16
发展南极中红外天文的有利条件 高海拔 低大气含水量 低温,低背景 优秀宁静度,白天优于夜晚 长观测时间
4100m altitude, Comparable to Mauna Kea and Chilean sites 低大气含水量 South pole (worse), Annual Avg. < 0.44 mm Dome A, 2 times better Mauna Kea, PWV 1 mm 低温,低背景 South Pole, times darker than temperate sites Dome A, less wind, thinner inversion layer 优秀宁静度,白天优于夜晚 长观测时间 Daytime observations for about half year Continuous observations of time variable objects.
17
红外天空背景 Leinert et al 1998
18
Beckers,2010
19
Beckers,2010
20
Mauna Kea, South Pole, Dome C, Dome A
Lawrence et al, 2004
21
Mauna Kea Dome A Lawrence et al, 2004
22
Aristidi et al 2005
23
EXAMPLE: SOFIA EXES – IRTF TEXES Echelon cross Echelle Spectrograph
PI, John Lacy, University of Texas at Austin Science goal: Physical and chemical processes of molecular gas (H2, H2O, CH4) in quiescent clouds and in protostellar disks. Medium to high spectral resolution, 2-3 km/s resolution. Technological facts: Detector: Raytheon 2562 SiAs IBC Array RMS 15.6 e-, QE~30-60%, well size=1.9x105 e- m, mid-IR Hi-res, /~100000, cross-dispersed, ~5 cm-1 Med-res, /~10000, long slit, ~5 cm-1 Lo-res, /~2000, long slit, ~/30 m
24
EXES TEXES
26
36 inch long, 0.3 inch groove spacing 0.03 inch groove height
Echelon Grating 0.3” 36 inch long, 0.3 inch groove spacing 0.03 inch groove height
27
EXES’ Cryogenics
28
Hi-Med Mode
29
Jupiter Hot Spot (hi-low mode)
30
Medium-resolution long-slit
0.5% coverage 45″ slit Low resolution long-slit R~3,000 0.2 m coverage 45″ long slit
31
Researches Carried out with TEXES
Ionized gas kinematics in UC HII regions Molecular lines from protostellar objects Molecular lines from protoplanetary discs Atmospheric structures in solar planets, satellites
32
Thank You!
Similar presentations