Download presentation
Presentation is loading. Please wait.
Published byΚαλλικράτης Κυπραίος Modified 6年之前
1
普通物理 General Physics 12 - Equilibrium, Indeterminate Structures
郭艷光 Yen-Kuang Kuo 國立彰化師大物理系暨光電科技研究所 網頁:
2
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
Outline 12-1 What Is Physics? 12-2 Equilibrium 12-3 The Requirements of Equilibrium 12-4 The Center of Gravity 12-5 Some Examples of Static Equilibrium 12-6 Indeterminate Structures 12-7 Elasticity 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
3
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
12-1 What Is Physics? In this chapter, we will define equilibrium and find the conditions needed so that an object is at equilibrium. We will then apply these conditions to a variety of practical engineering problems of static equilibrium. We will also examine how a “rigid” body can be deformed by an external force. 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
4
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
12-2 Equilibrium 1.The linear momentum P of the center of mass is constant. 2.The angular momentum L about the center of mass or any other point is a constant. 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
5
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
Our concern in this chapter is with situations in which P=L=0 Unstable equilibrium : 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
6
12-3 The Requirements of Equilibrium
2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
7
12-3 The Requirements of Equilibrium
These requirements obviously hold for static equilibrium. They also hold for the more general equilibrium in which and are constant but not zero. In component form the conditions of equilibrium are Balance of forces : Fnet,x = 0 Fnet,y = 0 Fnet,z = 0 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
8
12-3 The Requirements of Equilibrium
Balance of torques : τnet,x = 0 τnet,y = 0 τnet,z= 0 The linear momentum P of the center of mass must be zero: P = 0 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
9
12-3 The Requirements of Equilibrium
Statics Problem Recipe 1.Draw a force diagram (Label the axes.) 2.Choose a convenient origin O. A good choice is to have one of the unknown forces acting at O 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
10
12-3 The Requirements of Equilibrium
3.Sign of the torquet tau for each force: “+”If the force induces clockwise (CW) rotation. “-”If the force induces counter-clockwise (CCW) rotation. 4. Equilibrium conditions Fnet,x = 0 Fnet,y = 0 taunet,z = 0. 5.Make sure that: numbers of unknowns = number of equations. 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
11
12-3 The Requirements of Equilibrium
The gravitational force on a body effectively acts at a single point, called the center of gravity (cog) of the body. If is the same for all elements of a body, then the body’s center of gravity (cog) is coincident with the body’s center of mass (com). 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
12
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
12-4 The Center of Gravity 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
13
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
Example 12-1 A uniform beam, of length L and mass m = 1.8 kg, is at rest on two scales. A uniform block, with mass M = 2.7 kg, is at rest on the beam, with its center a distance L/4 from the beam’s left end. What do the scales read? 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
14
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
Example 12-1 In Fig. (a), a uniform beam, of length L and mass m = 8 kg, is at rest on two scales. A uniform block, with mass M = 2.7 kg, is at rest on the beam, with its center a distance L/4 from the beam’s left end.What do the scales read? 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
15
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
Example 12-1 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
16
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
Example 12-2 In Fig a, a ladder of length L = 12 m and mass m = 45 kg leans against a slick (frictionless) wall.The ladder's upper end is at height h = 9.3 m above the pavement on which the lower end rests (the pavement is not frictionless).The ladder's center of mass is L/3 from the lower end. 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
17
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
Example 12-2 A firefighter of mass M = 72 kg climbs the ladder until her center of mass is L/2 from the lower end.What then are the magnitudes of the forces on the ladder from the wall and the pavement? 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
18
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
Example 12-2 Solution 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
19
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
Example 12-2 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
20
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
Example 12-3 Figure (a) shows a safe, of mass M = 430 kg, hanging by a rope from a boom with dimensions a = 1.9 m and b = 2.5 m The boom consists of a hinged beam and a horizontal cable. The uniform beam has a mass m of 85 kg; the masses of the cable and rope are negligible. 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
21
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
Example 12-3 What is the tension in the cable? In other words, what is the magnitude of the force on the beam from the cable? (b) Find the magnitude of the net force on the beam from the hinge. 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
22
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
Example 12-3 Solution 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
23
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
Example 12-3 Solution 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
24
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
Example 12-4 Let's assume that The Tower of Pisa is a uniform hollow cylinder of radius R = 9.8 m and height h = 60 m. The center of mass is located at height h/2, along the cylinder's central axis. In Fig(a), the cylinder is upright. In Fig (b), it leans rightward (toward the tower's southern wall) by θ = 5.5o, 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
25
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
Example 12-4 which shifts the com by a distance d. Let's assume that the ground exerts only two forces on the tower. A normal force FNL acts on the left (northern) wall, and a normal force FNR acts on the right (southern) wall. By what percent does the magnitude FNR increase because of the leaning? 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
26
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
Example 12-4 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
27
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
Example 12-4 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
28
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
Example 12-4 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
29
12-6 Indeterminate Structures
We has the following three equations at our disposal: Fnet,x= 0 Fnet,y= 0 τnet,z= 0 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
30
12-6 Indeterminate Structures
If the problem has more than three unknowns, we cannot solve it. We only can solve a statics problem for a table with three legs but not for one with four legs. Problems like these are called indeterminate. 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
31
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
12-7 Elasticity Metallic solids consist of a large number of atoms positioned on a regular three- dimensional lattice as shown in the figure.The lattice is repetition of a pattern (in the figure this pattern is a cube). 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
32
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
12-7 Elasticity 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
33
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
12-7 Elasticity Tensile stress is defined as the ratio F/A where A is the solid area. Strain (symbol S) is defined as the ratio ΔL/L where ΔL is the change in the length L of the cylindrical solid. 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
34
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
12-7 Elasticity The constant E (modulus) is known as: Young’s modulus. Note : Young’s modulus is almost the same for tension and compression. The ultimate strength Su may be different. 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
35
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
12-7 Elasticity Shearing : In the case of shearing deformation, strain is defined as the dimensionless ratio ΔX/L 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
36
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
12-7 Elasticity The stress/strain equation has the form : F/A = GΔX/L The constant G is known as the shear modulus 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
37
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
12-7 Elasticity Hyrdaulic Stress. The stress/strain equation has the form: P=BΔV/V B is known as the bulk modulus of the material. 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
38
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
Example 12-5 A steel rod has a radius R of 9.5 mm and a length L of 81 cm. A 62 kN force F stretches it along its length.What are the stress on the rod and the elongation and strain of the rod? 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
39
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
Example 12-5 Solution 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
40
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
A table has three legs that are 1.00 m in length and a fourth leg that is longer by d=0.50 mm, so that the table wobbles slightly. A steel cylinder with mass M = 290 kg is placed on the table (which has a mass much less than M) 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
41
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
So that all four legs are compressed but unbuckled and the table is level but no longer wobbles. The legs are wooden cylinders with crosssectional area A = 1.3 cm2; Young's modulus is E = 1.3×1010 N/m2 What are the magnitudes of the forces on the legs from the floor? 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
42
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
Example 12-6 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
43
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
Example 12-7 In Figure , a package of mass m hangs from a short cord that is tied to the wall via cord 1 and to the ceiling via cord 2. 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
44
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
Example 12-7 Cord 1 is at angle Φ= 40o with the horizontal. cord 2 is at angleθ. (a) For what value of θ is the tension in cord 2 minimized? (b) In terms of mg, what is the minimum tension in cord 2? 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
45
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
Example 12-8 The leaning Tower of Pisa is 55 m high and 7.0 m in diameter. The top of the tower is displaced 4.5 m from the vertical. Treat the tower as a uniform, circular cylinder. 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
46
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
Example 12-8 (a) What additional displacement, measured at the top, would bring the tower to the verge of toppling? (b) What angle would the tower then make with the vertical? 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
47
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
Example 12-8 (a) If it were not leaning, its center of mass is 3.5 m from the edge. Measured at the top,a displacement of twice as much: 7.0 m. So what is needed displace is – 4.5 = 2.5 m. (b) The angle measured from vertical is tan–1 (7.0/55) = 7.3° 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
48
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
Example 12-9 In Figure, two identical, uniform, and frictionless spheres, each of mass m, rest in a rigid rectangular container. A line connecting their centers is at 45 °to the horizontal. Find the magnitudes of the forces on the spheres from 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
49
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
Example 12-9 (a) The bottom of the container (b) The left side of the container, (c) The right side of the container (d) Each another. (Hint: The force of one sphere on the other is directed along the center-center line.) 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
50
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
Example 12-9 Equilibrium of forces on the top sphere leads to the two conditions And (using Newton’s third law) equilibrium of forces on the bottom sphere leads to the two conditions 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
51
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
Example 12-9 (a) Solving the above equations, we find F´floor = 2mg. (b) We obtain for the left side of the container, F´wall = mg. (c) We obtain for the right side of the container, Fwall = mg. (d) We get 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
52
普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
End of chapter 12! 2018/12/27 普通物理教材-12,國立彰化師範大學物理系/郭艷光教授
Similar presentations