Download presentation
Presentation is loading. Please wait.
1
Short Version : 12. Static Equilibrium 短版: 12. 靜力平衡
2
12.1. Conditions for Equilibrium 平衡的條件
(Mechanical) equilibrium = zero net external force & torque. (機械)平衡 = 外力和力距的淨值皆為零 Static equilibrium = equilibrium + at rest. 靜力平衡 = 平衡 + 靜止 For all pivot points 所有支點都是 Pivot point = origin of ri . 支(撐)點 = ri 的原點。 Prob 55: is the same for all choices of pivot points 對任一個支點的值都一樣
3
Example 12.1. Drawbridge 吊橋 y 2 Tension 張力 T 1 x Hinge force Fh
The raised span has a mass of 11,000 kg uniformly distributed over a length of 14 m. 拉起的橋身的 11,000 kg 質量,均勻地分佈在 14m 的長度上。 Find the tension in the supporting cable. 求支撐纜的張力。 Force Fh at hinge not known. 在鉸鏈處的力 Fh 不詳。 Choose pivot point at hinge 故取鉸鏈為支點。 y 2 Tension 張力 T 15 1 30 x Hinge force Fh 鉸鏈處的力 Another choice of pivot: Ex 15 選另一支點 Gravity 重力 mg
4
GOT IT 懂嗎? 12.1. (C) (A): F 0. (B): 0.
Which pair, acting as the only forces on the object, results in static equilibrium? 那一對力,單獨作用在物體上,就可以達成平衡? Explain why the others don’t. 解釋為甚麼其他都不成。 (C) (A): F 0. (B): 0.
5
12.2. Center of Gravity 重心 Center of gravity = point at which gravity seems to act 重心 = 重力似乎施於的那點 = 0 at CG. 重心處 = 0. Total torque on mass M in uniform gravitational field : 在均勻的重力場內,質塊 M 上的總力距 for uniform gravitational field 均勻的重力場
6
Conceptual Example 12.1. Finding the Center of Gravity 求重心
Explain how you can find an object’s center of gravity by suspending it from a string. 說明如何用繩子吊起來就可以找到物體的重心。 2nd pivot 第二個支點 1st pivot 第一個支點
7
12.3. Examples of Static Equilibrium 靜力平衡的例子
All forces co-planar: 所有的力都共面 2 eqs in x-y plane x-y 面上兩個方程 1 eq along z-axis z-軸上一個方程 Tips : choose pivot point wisely. 祕訣: 選支點要聰明。
8
Example 12.2. Ladder Safety 梯子的安全使用
A ladder of mass m & length L leans against a frictionless wall. 一質量為 m ,長度為 L 的梯子靠在一無磨擦的牆上。 The coefficient of static friction between ladder & floor is . 梯子與地板的靜磨擦系數為 。 Find the minimum angle at which the ladder can lean without slipping. 求梯子不滑倒的最小角度 。 Fnet x : n2 y Fnet y : Choose pivot point at bottom of ladder. 支點取在梯子底 z : mg n1 x fS = n1i 0 90
9
Example 12.3. Arm Holding Pumpkin 拿著南瓜的手臂
Find the magnitudes of the biceps tension & the contact force at the elbow joint. 求雙頭肌張力和手肘接觸力的大小。 雙頭肌 Fnet x : Fnet y : 肱骨 Pivot point at elbow 支點在手肘 手肘支點 z : y T Fc 80 x mg Mg ~ 10 M g
10
12.4. Stability 穩定性 Stable equilibrium: Original configuration regained after small disturbance. 穩定平衡: 經過小干擾後能恢復原狀。 Unstable equilibrium: Original configuration lost after small disturbance. 不穩定平衡: 經過小干擾後不能恢復原狀。 Stable equilibrium 穩定平衡 Unstable equilibrium 不穩定平衡
11
Equilibrium 平衡 : Fnet = 0. V at global min V 為整體最小值 Stable穩定 Unstable 不穩定 V at local max V 為局部最大值 Neutrally stable 中性穩定 V = const 定值 Metastable 介穩定 V at local min V 為局部最小值
12
Metastable equilibrium :
PE at local min 介穩定平衡:位能局部最小值 Stable equilibrium : PE at global min 穩定平衡: 位能整體最小值
13
Example 12.4. Semiconductor Engineering 半導體工程
A new semiconductor device has electron in a potential U(x) = a x2 – b x4 , 一個新的半導體元件把電子放在位勢 U(x) = a x2 – b x4 中, where x is in nm, U in aJ (1018 J), a = 8 aJ / nm2, b = 1 aJ / nm4. 此處 x 的單位是 nm, U 的是 aJ (1018 J) , a = 8 aJ / nm2, b = 1 aJ / nm4. Find the equilibrium positions for the electron and describe their stability. 求電子的各個平衡位置,及其穩定性。 Equilibrium criterion : 平衡條件: equilibria 各平衡點 or Metastable 介穩定 x = 0 is (meta) stable (介)穩定 x = (a/2b) are unstable 不穩定
14
Saddle Point 鞍點 Equilibrium condition 平衡條件 stable 穩定 Saddle point 鞍點
unstable 不穩定 unstable 不穩定
Similar presentations