Presentation is loading. Please wait.

Presentation is loading. Please wait.

Short Version : 12. Static Equilibrium 短版: 12. 靜力平衡

Similar presentations


Presentation on theme: "Short Version : 12. Static Equilibrium 短版: 12. 靜力平衡"— Presentation transcript:

1 Short Version : 12. Static Equilibrium 短版: 12. 靜力平衡

2 12.1. Conditions for Equilibrium 平衡的條件
(Mechanical) equilibrium = zero net external force & torque. (機械)平衡 = 外力和力距的淨值皆為零 Static equilibrium = equilibrium + at rest. 靜力平衡 = 平衡 + 靜止 For all pivot points 所有支點都是 Pivot point = origin of ri . 支(撐)點 = ri 的原點。 Prob 55: is the same for all choices of pivot points 對任一個支點的值都一樣

3 Example 12.1. Drawbridge 吊橋  y 2 Tension 張力 T 1 x Hinge force Fh
The raised span has a mass of 11,000 kg uniformly distributed over a length of 14 m. 拉起的橋身的 11,000 kg 質量,均勻地分佈在 14m 的長度上。 Find the tension in the supporting cable. 求支撐纜的張力。 Force Fh at hinge not known. 在鉸鏈處的力 Fh 不詳。  Choose pivot point at hinge 故取鉸鏈為支點。 y 2 Tension 張力 T 15 1 30 x Hinge force Fh 鉸鏈處的力 Another choice of pivot: Ex 15 選另一支點 Gravity 重力 mg

4 GOT IT 懂嗎? 12.1. (C) (A): F  0. (B):   0.
Which pair, acting as the only forces on the object, results in static equilibrium? 那一對力,單獨作用在物體上,就可以達成平衡? Explain why the others don’t. 解釋為甚麼其他都不成。 (C) (A): F  0. (B):   0.

5 12.2. Center of Gravity 重心 Center of gravity = point at which gravity seems to act 重心 = 重力似乎施於的那點  = 0 at CG. 重心處  = 0. Total torque on mass M in uniform gravitational field : 在均勻的重力場內,質塊 M 上的總力距 for uniform gravitational field 均勻的重力場

6 Conceptual Example 12.1. Finding the Center of Gravity 求重心
Explain how you can find an object’s center of gravity by suspending it from a string. 說明如何用繩子吊起來就可以找到物體的重心。 2nd pivot 第二個支點 1st pivot 第一個支點

7 12.3. Examples of Static Equilibrium 靜力平衡的例子
All forces co-planar: 所有的力都共面 2 eqs in x-y plane x-y 面上兩個方程 1 eq along z-axis z-軸上一個方程 Tips : choose pivot point wisely. 祕訣: 選支點要聰明。

8 Example 12.2. Ladder Safety 梯子的安全使用
A ladder of mass m & length L leans against a frictionless wall. 一質量為 m ,長度為 L 的梯子靠在一無磨擦的牆上。 The coefficient of static friction between ladder & floor is . 梯子與地板的靜磨擦系數為  。 Find the minimum angle  at which the ladder can lean without slipping. 求梯子不滑倒的最小角度  。 Fnet x : n2 y Fnet y : Choose pivot point at bottom of ladder. 支點取在梯子底 z : mg n1 x fS = n1i   0    90

9 Example 12.3. Arm Holding Pumpkin 拿著南瓜的手臂
Find the magnitudes of the biceps tension & the contact force at the elbow joint. 求雙頭肌張力和手肘接觸力的大小。 雙頭肌 Fnet x : Fnet y : 肱骨 Pivot point at elbow 支點在手肘 手肘支點 z : y T Fc 80 x mg Mg ~ 10 M g

10 12.4. Stability 穩定性 Stable equilibrium: Original configuration regained after small disturbance. 穩定平衡: 經過小干擾後能恢復原狀。 Unstable equilibrium: Original configuration lost after small disturbance. 不穩定平衡: 經過小干擾後不能恢復原狀。 Stable equilibrium 穩定平衡 Unstable equilibrium 不穩定平衡

11 Equilibrium 平衡 : Fnet = 0. V at global min V 為整體最小值 Stable穩定 Unstable 不穩定 V at local max V 為局部最大值 Neutrally stable 中性穩定 V = const 定值 Metastable 介穩定 V at local min V 為局部最小值

12 Metastable equilibrium :
PE at local min 介穩定平衡:位能局部最小值 Stable equilibrium : PE at global min 穩定平衡: 位能整體最小值

13 Example 12.4. Semiconductor Engineering 半導體工程
A new semiconductor device has electron in a potential U(x) = a x2 – b x4 , 一個新的半導體元件把電子放在位勢 U(x) = a x2 – b x4 中, where x is in nm, U in aJ (1018 J), a = 8 aJ / nm2, b = 1 aJ / nm4. 此處 x 的單位是 nm, U 的是 aJ (1018 J) , a = 8 aJ / nm2, b = 1 aJ / nm4. Find the equilibrium positions for the electron and describe their stability. 求電子的各個平衡位置,及其穩定性。 Equilibrium criterion : 平衡條件: equilibria 各平衡點 or Metastable 介穩定 x = 0 is (meta) stable (介)穩定 x = (a/2b) are unstable 不穩定

14 Saddle Point 鞍點 Equilibrium condition 平衡條件 stable 穩定 Saddle point 鞍點
unstable 不穩定 unstable 不穩定


Download ppt "Short Version : 12. Static Equilibrium 短版: 12. 靜力平衡"

Similar presentations


Ads by Google