Download presentation
Presentation is loading. Please wait.
1
多項式方程式 網頁設計規劃書 第四組 蔡瑋倫,吳柏萱,張哲誌
2
教學內容大綱 何謂多項式方程式 如何求一元二次方程式的根 有理根判定法 勘根定理 實係數多項式的代數基本定理 實係數多項式虛根成對定理
3
1. 何謂多項式方程式? 定義:f (x) = a0 + a1x +…+an-1xn-1+ an xn=0
n Є N , a0 , a1 , … , an Є C(複數) 例子:3x4 + x2 - 7 = 0 反例:|x| + x2 + 3= 0
4
2.如何求一元二次方程式的根 因式分解法 將一元二次方程式整理成 ax2 + bx + c = 0(a,b,c Є R且a≠ 0)
如果我們能將等號左邊因式分解成兩個一次多 項式的乘積,就可得此方程式的解。 下面的例子來說明這種解法。
5
2.如何求一元二次方程式的根 因式分解法 Example:求2x2 + 1 = 5x – 1 的解。 Sol:利用移項可把原方程式改寫為
因式分解後可得2x2 - 5x + 2 = (2x – 1)(x-2) 因此,原方程式可改寫為 (2x – 1)(x-2) = 0 可知 2x – 1 =0 或 x-2 =0 即 x = 或 x =2。
6
2.如何求一元二次方程式的根 配方法 我們也可以利用平方根的概念來解方程式, 例如將 x2 - 4x + 2 = 0
7
2.如何求一元二次方程式的根 公式解 雖然利用配方法解一元二次方程式的程序較 為複雜,但觀察其過程,若避開繁複的運算
過程,直接將方程式的係數代入這個解的通 式,即可得到方程式的解,稱為公式解。
8
3.有理根判定法 設一方程式 f (x) = a0 + a1x +…+an-1xn-1+ an xn=0
n Є N , a0 , a1 , … , an Є C(複數),an ≠ 0 則 若 x = c 為 f (x) = 0 的整數根→c∣ a0 若 x = 為 f (x) = 0 的有理根 →a∣an 、b∣a 0
9
3.有理根判定法 Example: 2x3 - 11x2 - 20x –7= 0有幾個有理根? Sol:所有有理根有可能的值為 ± 1, ± 7, ± 1/2, ± 7/2 全部代入,發現只有-1/2為其根 故此方程式只有一個有理根
10
4.勘根定理 一元 n 次方程式,當n ≥ 3時,其解不容易求,但是我們可以利用勘根定理來判別其實數根之範圍。
11
4.勘根定理 設 f (x)為一個實係數n次多項式, a、b Є R 且 a < b。 若 f (a) × f (b) < 0,
則 f (x) = 0 在(a,b)之間至少有一實根。
12
4.勘根定理 則S(x) 三次多項式 有三個實數解 x1 , x2 , x3分別在 -0.1 < x1 < -0.2
S(-0.1) > 0 且 S(-0.2) < 0 S(0.1) > 0 且 S(0.3) < 0 S(0.3) < 0 且 S(0.7) > 0 則S(x) 三次多項式 有三個實數解 x1 , x2 , x3分別在 -0.1 < x1 < -0.2 0.1 < x2 < 0.3 0.3 < x3 < 0.7
13
5.代數基本定理 設 n Є N,對任意複係數 n 次多項式方程式必至少有一複數根。 推論:
設 n Є N,對任意複係數 n 次多項式方程式必恰有n 個根。(含重根與複數根)
14
6.實係數多項式虛根成對定理 若 f (x)為一實係數n次多項式方程式, 則 f (x)= 0 的虛根必成對出現,即:
若 f (a+bi ) = 0 , a、b Є R , b ≠ 0 則 f (a-bi ) = 0
15
6.實係數多項式虛根成對定理
16
6.實係數多項式虛根成對定理例題 已知5及1 2i為實係數方程式 x3 ax2 bx c 0之二根,則
(A)另一根為1 2i (B) a b c 10 (C) a 7 (D) b 15 (E) c 25。 【解答】(A)(D)
17
6.實係數多項式虛根成對定理詳解 實係數方程式有一根1 2i,則有一根1 2i 故x3 ax2 bx c 0三根為5,1 2i,1 2i ∴x3 ax2 bx c (x 5)[x (1 2i)][x (1 2i)] (x 5)(x2 2x 5) x3 7x2 15x 25 ∴a 7,b 15,c 25, 另一根為1 2i
18
7. 網頁設計想法與理念 簡單明瞭,不拖泥帶水 加深學生對概念的瞭解,而不是單純解題 將數學與生活做連結,進而引發學習興趣
19
8. 教學網頁教學目標 瞭解何謂多項式方程式,並知道求解的方法 學會活用勘根定理,並瞭解其原理
瞭解何謂代數基本定理,並能求出一個指定方程式所有的解
20
9. 網頁設計規畫與流程 第一步:蒐集資料 各組員獨立蒐集資料後,分析此章節所需要教學的目標,並深入探討彼此的關聯
21
9. 網頁設計規畫與流程 第二步:Do it! 著手架構網頁藍圖,並使用Word編輯方程式,以及GSP繪圖,再貼上至PowerPoint
22
9. 網頁設計規畫與流程 第三步: 著手建立網頁,並設計題目讓學生有獨立思考的空間,嘗試將互動教學融入其中。
23
10. 網頁教學設計流程 多項式方程式定義 如何求一元二次方程式的根 勘根定理 有理根判定法 實係數多項式的代數基本定理
實係數多項式虛根成對定理
24
11. 參考資料 http://csm01.csu.edu.tw/0166/Math2/93.htm
98年課程綱要
Similar presentations