Download presentation
Presentation is loading. Please wait.
1
电力线之美 PB 王泉
2
问题的提出 电场线是美的 1
3
问题的提出 电场线是美的 电场线是怎么绘制出来的? 1
4
电场线方程(1) 电场线的定义:电场所在空间中的一系列想象的曲线,曲线上每一点的切线方向都与该点的场强方向一致。 数学化 定义 抽象
5
电场线方程(1) 库仑定律 空间各点的场强(大小,方向) 电荷 (Q1,Q2…Qn) 叠加原理
6
电场线方程(1)
7
电场线方程(1) 孤立点电荷的电场线方程 : Solve it!
8
电场线方程(1) 复杂一些的情况 : Solve it ? ???
9
电场线方程(2) 数值方法(欧拉折线法) 基本思想: 寻求精确解的折线逼近
10
电场线方程(2) 流程: 以A为起始点,A的切线方向为方向,以s为步长作线段 点A (x,y) A的切线方向
11
电场线方程(2)
12
电场线方程(2) 例: 线性电四极子 思想:欧拉折线法 初始条件:在距离电荷很近的地方取点
(位于 N(-L,0), O(0,0), P(L,0),带电量分别为 + Q,-2Q, + Q的电荷系统 ) 思想:欧拉折线法 初始条件:在距离电荷很近的地方取点
13
程序流程图(Start) 开始 电荷初始化 转动角θ= 0.01
14
θ += π/12 测试点A=电荷P; φ = θ;点集Points[]={P的坐标};测试点的初位移l=0.01
上一测试点PreviousPoint=测试点A 测试点A=(PreviousPointX+Step*Cosφ ,PreviousPointY+Step*Sinφ ) 利用库仑定律计算测试点A的受力F(用复数表示) 注: 1.测试点A带一个单位正电荷 2.φ 代表测试点A要走的方向 3.Points[]为存储A所经过的点的数组 4.Graphic[]为存储场线的数组 5.测试点A满足的条件:不能离电荷太近 不能离远点太远 φ =F的幅角; Points[]+={A的坐标} 侧试点A是否满足条件? YES NO Points[]中的点以线段连接成为场线; Graphic[]+=场线 θ <2π ? YES NO
15
程序流程图(End) 打印出Graphic[]中的所有场线 结束
16
Generated By Mathematica 4.1
一些电场线(线性四极子) {坐标,带电量} 令: PositiveCharge = {2 + 0i, 1}; NegativeCharge = {-2 + 0i, 1}; MiddleCharge = {0 + 0i, -2}; Generated By Mathematica 4.1
17
Generated By Mathematica 4.1
一些电场线 Generated By Mathematica 4.1 令: PositiveCharge = {2 + 0i, 1}; NegativeCharge = {-2 + 0i, 1}; MiddleCharge = {0 + 0i, 0};
18
Generated By Mathematica 4.1
一些电场线 Generated By Mathematica 4.1 令: PositiveCharge = {2 + 0i, 1}; NegativeCharge = {-2 + 0i, -1}; MiddleCharge = {0 + 0i, 0};
19
Generated By Mathematica 4.1
一些电场线 Generated By Mathematica 4.1 令: PositiveCharge = {2 + 0i, 3}; NegativeCharge = {-2 + 0i, -1}; MiddleCharge = {0 + 0i, 0};
20
Generated By Mathematica 4.1
一些电场线 Generated By Mathematica 4.1 令: PositiveCharge = {2 + 3i, 5}; NegativeCharge = {-2 + 0i, -1}; MiddleCharge = {0 + 0i, 0};
21
Generated By Mathematica 4.1
一些电场线(平面电三极子) Generated By Mathematica 4.1 令: PositiveCharge = {2 + 0i, 1}; NegativeCharge = {-2 + 0i, 1}; MiddleCharge = { i, -2 };
22
Generated By Mathematica 4.1
一些电场线 Generated By Mathematica 4.1 令: PositiveCharge = {2 + 0i, 1}; NegativeCharge = {-2 + 0i, -1}; MiddleCharge = {0 - 4i, -5};
23
Generated By Mathematica 4.1
一些电场线(电偶极子) Generated By Mathematica 4.1 令: PositiveCharge = { i, 1}; NegativeCharge = { i, -1}; MiddleCharge = {0 + 0i, 0};
24
Generated By Mathematica 4.1
一些电场线(平面电四极子) Generated By Mathematica 4.1 令: PositiveCharge = {1 + i, 1}; NegativeCharge = {-1 + i, -1}; PositiveCharge2 = {-1 - i, 1}; NegativeCharge2 = {1 - i, -1};
25
Generated By Mathematica 4.1
一些电场线 Generated By Mathematica 4.1 令: PositiveCharge = { i, 1}; NegativeCharge = {-2 + 2i, -5}; PositiveCharge2 = {-0.5 – 0.5i, 1}; NegativeCharge2 = {+2 - 2i, -5}
26
Generated By Mathematica 4.1
一些电场线 Generated By Mathematica 4.1 令: PositiveCharge = {1 + i, 1}; NegativeCharge = {-1 + i, -1}; PositiveCharge2 = {-3 – 3i, 1}; NegativeCharge2 = {+3 - 3i, -1}
27
Generated By Mathematica 4.1
一些电场线(任意情形) Generated By Mathematica 4.1 令: PositiveCharge = {3 + 0i, 1}; NegativeCharge = {-3 + 2i, -3}; PositiveCharge2 = {-4 – 4i, 1}; NegativeCharge2 = {2 - 3i, -2}
28
等势曲线 算法: ∵等势曲线与电场线曲线正交 ∴作电场线图的过程中把方向角φ加上π/2,所得到的图形就是等势曲线
29
Generated By Mathematica 4.1
一些等势曲线 Generated By Mathematica 4.1 令: PositiveCharge = {2 + 0i, 1}; NegativeCharge = {-2 + 0i, -1};
30
Generated By Mathematica 4.1
一些等势曲线 Generated By Mathematica 4.1 令: PositiveCharge = {2 + 0i, 1}; NegativeCharge = {-2 + 0i, 1};
31
Generated By Mathematica 4.1
一些等势曲线 Generated By Mathematica 4.1 令: PositiveCharge = {2 + 1i, 2}; NegativeCharge = {-2 + 0i, -1};
32
Generated By Mathematica 4.1
一些等势曲线 Generated By Mathematica 4.1 令: PositiveCharge = {2 + 0i, 1}; NegativeCharge = {-2 + 0i, 3};
33
总结 数值解法的强大威力(“笨” 但是 有效) Mathematica 编程的优越性(切中要害)
34
谢谢! 参考资料: 指导教师: 1. 《电磁学》高等教育出版社 2. 《数学实验》高等教育出版社
3. Fields and Potentials from Point Charges by Department of Physics and Astronomy, Oberlin College 指导教师: 叶邦角
Similar presentations