Download presentation
Presentation is loading. Please wait.
Published byNathan Kok Modified 5年之前
2
Chapter 1 統計學緒論
3
Study Report 講述一個神奇而美麗的統計
很多人或許常常在問:「What is Statistics」-統計是甚麼? 統計是製造可信賴的之資料,分析資料的真正意義。 有一列火車上有一位統計學家,一位物理學家和一位數學 家。當他們經過一片草原時看到一隻黑色的羊。於是統計學家 先說:這一隻羊是黑色的,所以世界上所有的羊都是黑色的 (樣本是一)。物理學家接著說:這隻羊是黑色的,其它的羊 的顏色不知道。那位數學家慢慢地說:這隻羊的這一邊是黑色 的。個故事在說明數學對嚴謹性的要求,相較之下,統計講求 嚴謹的態度似乎略遜於數學及物理的要求。 或許統計與機率對人類的價值在於正因為我們的能力不允許我們掌握「所有」的資訊,我們無法知道百分之百的結果,只能猜吧!至於如何猜就是統計與機率的精髓所在。
4
Study Report 講述一個神奇而美麗的統計
5
1.1 統計的意義 統計的意義 人類的行為與自然界的現象及科學的研究大多會產生大量的資料,要想將此大量資料轉化成有用的資訊,只有靠統計學才有可能。 何謂統計學 對觀察到的或測量到的資料加以處理,以及對處理後的資料加以利用,以協助研究者做判斷推論的一門學問。 課本 p.6
6
1.2 數字與資料型態 資料的尺度 1.名目尺度(Nominal Scale) 2.順序尺度(Ordinal Scale)
3.區間尺度(Interval Scale) 4.比例尺度(Ratio Scale) 課本 p.7~p.8
7
1.2 數字與資料型態 比例尺度 區間尺度 順序尺度 名目尺度 階梯上層的資料往往可以降階到下一層的資料(例如:比例尺度可以降階為區間、順序或名目尺度;區間尺度可以降為順序尺度或名目尺度….依此類推)。 課本 p.9
8
1.2 數字與資料型態 資料的型態 1.量=定量資料(Quantitative Data)
由區間或比例衡量尺度得來的,為數值性的連續資料。 2.質=定性資料(Qualitative Data) 由名目或順序衡量尺度得來的,不可做數值運算,為間 斷的資料,又稱類別資料。 課本 p.9
9
1.3 表達數據的方法 一般而言,數據的表達方法有 1.比(Ratio) 2.比率(Rate) 3.比例(Proportion)
比例即指一數值佔總數的比重,若將之乘100即百分數。 課本 p.10
10
1.4 資料之取得 已存在資料之來源-第二手資料 調查而得的資料-第一手資料 所需的資料並不是現存的資料,則必須進行統計研究以收集資料。
統計研究可分為 1.實驗性的研究(Experimental Study) 2.觀察性的研究(Observational Study) 課本 p.11~p.12
11
1.4 資料之取得
12
1.5 取得資料之可能錯誤 管理者需明瞭在統計研究中所使用的資料可能會有錯誤。使用錯誤的資料產生的統計分析比完全不使用該資料及統計資訊更糟。因此分析人員須審慎以防錯誤發生,特別檢查異常值(特大或特小數值)。 課本 p.13
13
大小順序性 (0 < 1 < 2 < …< 9)
1.5 取得資料之可能錯誤 數字特性 資料類型 自然、社 會、企業 之現象 集中、 差異量數 統計方法 各自獨立性 (0, 1, 2, …, 9) 名目資料 (Nominal) 品牌偏好、性別、商店 類型、住宅地區 百分比、眾數、相對次數 分配、類別關聯 比例數(差)檢定、卡方適合度檢定、卡方獨立性檢定、符號檢定、隨機性檢 定。 大小順序性 (0 < 1 < 2 < …< 9) 順序資料 (Ordinal) 態度、偏好、職業、社 會階層 眾數、中位數、四分位距、 順序相關 比例數(差)檢定、卡方適合度檢定、卡方獨立性檢定、符號檢定、隨機性檢 定、中位數檢定、K-S檢定、ilcoxon、Mann-Witney U、Kruskal-Wallis H test、 Friedman test。 等距性 (8-6 = 4-2) 區間資料 (Interval) 態度、意見、指數、溫 度、成績 眾數、中位數、算數平均 數、全距、標準差、積差 相關 比例數(差)檢定、卡方適合度檢定、卡方獨立性檢定、符號檢定、隨機性檢 定、中位數檢定、K-S檢定、ilcoxon、Mann-Witney U、Kruskal-Wallis H test、 Friedman test、Z test、t test、2-test、F test ANOVA、迴歸分析、時間序列分 析。 等比性 (2 / 4 =3 / 6) 比例資料 (Ratio) 年齡、成本、價格、銷 售量、所得 眾數、中位數、算數平均 數、全距、標準差、積差 相關、幾何平均數、調和 平均數、變異係數
14
1.6 母體與樣本 母體與參數 母體(Population)分為: 1.有限母體(Finite Population)
2.無限母體(Infinite Population) 母體參數(Parameter)包括四類: 1.測定母體趨中性:算術平均數、型量、中位數 2.測定分散度:變異數、均方、標準偏差 3.測定偏歪度:Fisher的 係數、E.S Pearson的 係數 4.測定頻度分布的曲線峰度:Fisher的 係數、Gray的 係數 課本 p.14
15
1.6 母體與樣本 樣本與樣本統計量 樣本:樣本是由母體中抽取部分元素而組成的集合,是 母體的一部份
樣本統計量:由樣本資料求得某一統計值來估計參數, 此統計量稱樣本統計量 課本 p.14
16
1.7 統計的研究步驟 課本 p.15 圖1-3 統計的研究步驟
17
1.8 統計的分類 對研究問題收集資料後,將資料整理、表現成彙總的形式。 利用樣本的訊息和特性對原先的母體作推斷,這就是推論統計。
敘述統計(Descriptive Statistics) 對研究問題收集資料後,將資料整理、表現成彙總的形式。 推論統計(Statistical Inference) 利用樣本的訊息和特性對原先的母體作推斷,這就是推論統計。 課本 p.16
18
1.8 統計的分類
19
1.8 統計的分類 統計與其他學科之關係 1.會計 2.財務 3.行銷 4.生產 5.經濟 課本 p.17
20
1.8 統計的分類 統計在企業的應用 1.品質管制 2.預測統計 3.人事管理 4.生產計劃 5.市場研究 6.年度報告 課本 p.18
21
1.9 歸納法與演繹法 統計學上所用的方法可分為 1、歸納法(Induction) 2、演繹法(Deduction)
課本 p.18~p.19
22
1.9 歸納法與演繹法 歸納法 從某些個別訊息中獲得一般性的結論。利用樣本的 資料,以歸納的方法推論母體參數值。 課本 p.18
23
1.9 歸納法與演繹法 演繹法 使用邏輯推理的方法去推導某些個例特性的方法。 課本 p.19
24
1.10 統計的沿革與未來發展 台灣的統計經驗 台灣光復後之政府統計可概分為以下四個發展階段: 1.重建台灣統計業務(1950年代)
2.革新統計制度(1960年代~1970年代) 3.強化社會統計(1980年代) 4.精進統計業務(1990年代迄今) 課本 p.21~p.22
25
1.10 統計的沿革與未來發展 強化統計學術研究 台灣統計工作的成就 1.台灣統計品質已具國際水準 2.台灣統計學術成就深受國際矚目
3.政府統計與學術密切交流 課本 p.22~p.23
26
1.10 統計的沿革與未來發展 統計未來展望 台灣統計未來的發展有三方面 1.繼續加強理論研究及實務應用,積極拓展與工商業界合作。
2.促進國際合作,提升統計水準。 3.落實對本土社會提生活環境的關懷,積極推動自然資源保育與環境保護等統計。 課本 p.23~p.24
27
統計實例─王李滿天下 中國大陸地區有所謂:「王李滿天下」之稱,中國大姓的實際情況如何呢?就讓我們看看統計的結果。
中國大陸前二十大姓氏統計(單位:萬人) 姓氏 王 李 張 劉 陳 楊 黃 趙 吳 周 排名 1 2 3 4 5 6 7 8 9 10 人數 9,255 9,102 8,669 6,528 5,664 4,168 2,941 2,618 2,502 2,433 徐 孫 馬 朱 胡 郭 何 高 林 羅 11 12 13 14 15 16 17 18 19 20 1,855 1,794 1,689 1,646 1,497 1,426 1,334 1,290 1,250 1,240 課本 p.25
28
~End~ Thank you
Similar presentations