Presentation is loading. Please wait.

Presentation is loading. Please wait.

中国科学院物理研究所  通用实验技术公共课程

Similar presentations


Presentation on theme: "中国科学院物理研究所  通用实验技术公共课程"— Presentation transcript:

1 中国科学院物理研究所  通用实验技术公共课程
《磁性测量》 第七讲:仪器的原理和使用  赵同云 磁学国家重点实验室 2019年5月9日

2 声 明 本讲稿中引用的图、表、数据全部取自公开发表的书籍、文献、论文,而且仅为教学使用,任何人不得将其用于商业目的。

3 磁性测量仪器篇 之二 VSM的介绍

4 Vibrating Sample Magnetometer
振动样品磁强计 Vibrating Sample Magnetometer (VSM) 感谢S. Foner

5 主要内容 锁相放大器 原理基础与假设 设计理念 开路测量的特点 样品的尺寸限制与位置调节

6 锁相放大器 Lock-in Amplifier

7 锁相放大器 Ui Uo Ur 锁相放大器 正交矢量锁相放大器 前置放大器 相敏检波器 A 低通 滤波器 A + 90 乘法器 输入 输出
参考 + 90 正交矢量锁相放大器

8 锁相放大器的起源 同步检波 (Synchronous detection) 微弱信号的测量 必须进行放大 同步:相位固定 u(t) t
假设,信号幅度10 nV,频率10 kHz 假设,放大器带宽100 kHz,放大倍数1000 输出信号:10 V 噪声信号:1.6 mV

9 锁相放大器的起源 放大 (amplification):简单放大不太行 -44 dB 带通滤波 (band filter) -14 dB
假设,带通滤波器中心频率10 kHz,品质因数Q=100 输出信号:10 V 噪声信号:50 V -14 dB

10 锁相放大器的起源 特制的带通滤波器(PSD) 104 + 26 dB 假设,带通滤波器中心频率10 kHz,品质因数Q=1000000
输出信号:10 V 噪声信号:0.5 V + 26 dB

11 相敏检波 相敏检波器:鉴相器、同步解调器 乘法器(PD) 低通滤波器(LPF) ur(t) ui(t) ud(t) 锁相放大器1 正弦鉴相器
和频 差频

12 相敏检波 相敏检波器:鉴相器、同步解调器 0.01 Hz ur(t) ui(t) ud(t) uLPF(t) PD或者PSD
锁相放大器2 相敏检波器:鉴相器、同步解调器 ur(t) ui(t) ud(t) 低通 滤波器 uLPF(t) 0.01 Hz PD或者PSD 当输入信号与参考信号同频时,i-r  0,

13 相敏检波 锁相放大器3 相敏检波器:鉴相器、同步解调器 90相移 利用正交相敏检波: 同相: 正交:

14 参考信号 锁相环:PLL=PSD + LPF + VCO vo(t) ui(t) ud(t) uLPF(t) PD或者PSD ur(t)
锁相放大器4 锁相环:PLL=PSD + LPF + VCO vo(t) ui(t) ud(t) 低通 滤波器 uLPF(t) PD或者PSD VCO ur(t) ur(t) 锁相环 uLPF(t) o(t) r(t) VCO:压控振荡器

15 相位锁定 锁相放大器5 相位锁定的过程: 参考信号频率捕捉 uLPF(t) t

16 数字锁相放大器 数字化:DSP 虚拟化:软件锁相放大器 ur(t) ui(t) ud(t) uLPF(t) ur(t) ui(t)
锁相放大器6 数字化:DSP ur(t) ui(t) ud(t) 低通 滤波器 uLPF(t) ur(t) ui(t) ud(t) 低通 滤波器 uLPF(t) DSP (Digital Signal Processor) A/D 虚拟化:软件锁相放大器

17 数字锁相放大器 锁相放大器7 晶体振荡器 C0 Cq rq Lq Z (0) O X s p 晶振基频等效电路 晶振的阻抗曲线

18 数字锁相放大器 晶体振荡器的调频 VCO 频率合成 锁相放大器8 调频电压 直接式频率合成:步进大; 间接式(锁相环)频率合成:切换时间长;
变容二极管 输出 VCO 频率合成 直接式频率合成:步进大; 间接式(锁相环)频率合成:切换时间长; 直接数字式频率合成:步进小、切换时间短。

19 VSM的基础 点磁偶极子(point dipole)假设 检测线圈内的磁场强度: 检测线圈内的磁通量: VSM1 z 检测线圈 O y
x y z O 检测线圈 rc (x, y, 0) 检测线圈内的磁通量: (x0, y0, z)

20 VSM2 VSM的基础 感应电势的处理方法 直接算的方法: 利用互易性(reciprocity)原理:

21 VSM3 样品位于检测线圈的轴线上 单匝检测线圈内的磁通量: + 一级梯度线圈 单匝检测线圈内的感应电势:

22 VSM4 样品偏离轴线  距离 单匝检测线圈内的磁通量: n=2 单匝检测线圈内的感应电势:n=2

23 VSM5 一级梯度线圈(串联反接的两个相同线圈) 一级梯度线圈 +

24 磁通量与点磁偶极子位置 一级梯度线圈:可以抵消均匀磁场 径向偏移 “鞍区” ACMS VSM

25 互易性原理 互易性原理(principle of reciprocity)
VSM6 互易性原理 互易性原理(principle of reciprocity) 磁矩 m 在检测线圈中所产生的磁通量  ,等价于 此检测线圈通以电流 I 时所产生的磁场 B 的磁通量: I rc z(t) m Biot-Savart定律

26 互易性原理 均匀磁化(homogeneous magnetization)  圆形电流线圈的磁场(春) 小样品!
VSM7 互易性原理 均匀磁化(homogeneous magnetization) gcoil:几何(位置)灵敏因子 I rc z(t) m  圆形电流线圈的磁场(春) 小样品!

27 VSM8 互易性原理 非均匀磁化(inhomogeneous magnetization) 非旋转椭球体,大样品!

28 几何(位置)灵敏因子 原理性计算(单匝线圈) B 圆柱面坐标系 平行于线圈轴向的分量: rc 沿着线圈径向的分量: VSM9 线圈半径:rc
线圈截面法线方向永远与外磁场方向一致 B 方向为零 圆柱面坐标系 一级梯度线圈 + 平行于线圈轴向的分量: z rc 沿着线圈径向的分量:

29 VSM10 几何(位置)灵敏因子 平行于线圈轴向运动 z 轴向(z 方向)分量: B 一级梯度线圈 + m rc

30 几何(位置)灵敏因子 平行于线圈轴向运动 基于超导磁体的VSM系列,如 QD:PPMS_VSM;SQUID_VSM
在轴线上的灵敏因子: 基于超导磁体的VSM系列,如 QD:PPMS_VSM;SQUID_VSM Oxford:MagLab

31 (借用) rc 中国计量科学研究院 磁性测量室

32 Helmholtz配置:=rc 平行于轴向 + Mathematica作图

33 等高线

34 最均匀配置:=3rc 平行于轴向 + Mathematica作图

35 远距离配置:=2rc 平行于轴向 + Mathematica作图

36 VSM10 几何(位置)灵敏因子 垂直于线圈轴向运动 z 径向( 方向)分量: B 一级梯度线圈 + m rc

37 几何(位置)灵敏因子 垂直于线圈轴向运动 基于电磁铁的VSM系列,如 所有的VSM(两线圈常见) 灵敏因子:沿着  方向(x, y方向)
z + x rc Mathematica的输出 B z m 基于电磁铁的VSM系列,如 所有的VSM(两线圈常见) 一级梯度线圈

38 Helmholtz配置:=rc 垂直于轴向 + Mathematica作图

39 最均匀配置:=3rc 垂直于轴向 + Mathematica作图

40 等高线

41 等高线 + θ1 θ2 + + +

42 远距离配置:=2rc 垂直于轴向 + Mathematica作图

43 中国计量科学研究院 磁性测量室 (借用) rc

44 VSM的作业题目 VSM的设计理念 为什么要振动样品? 为什么要使用双线圈?四线圈? 为什么要调节鞍区? 为什么要定标磁矩?

45 振 动 样 品 磁 强 计 VSM几个关键的问题 样品必须处于均匀磁场中:均匀区 我们只能检测感应电动势:检测线圈
怎样得到磁偶极子:样品、驱动方式 样品-线圈-振幅-频率

46 振 动 样 品 磁 强 计 磁场均匀区 VSM13 无限长螺线管 亥姆霍兹线圈 超导磁体 螺线管 均匀区较大 圆柱极头 磁场强度可能较低
电磁铁 d 均匀区较小 磁场强度可能很高 圆台极头 电磁铁

47 VSM14 样品振动 检测线圈-感应电动势 Z a f(ω) Z a f(ω)

48 VSM15 样品振动 检测线圈-感应电动势-磁矩 待测磁矩 振动幅度 锁相放大器 正比 关系 振动频率 线圈几何因子

49 振 动 样 品 磁 强 计 检测磁矩的最终表达式 必须满足的条件:(确保永远适用) 感应电动势 电压有效值 VSM16
检测线圈尺寸、位置固定; 样品沿固定方向磁化; 样品尺寸与线圈位置:满足磁偶极子条件 有足够大的“鞍点区”

50 双线圈的配置 串联反接-检测线圈 VSM17 定义:空间位置函数fZ(r)中各频率成份中与位置有关的函数,
为该频率成份的线圈几何因子KF。 检测线圈位置函数 基频的线圈几何因子KF1: 垂直于轴向 为什么要使用双线圈?

51 双线圈的配置 串联反接-检测线圈 VSM18 基频(ω)的贡献: Z 线圈直径:D 样品_线圈:r(x) 当r2 > 5D2时,
在 x 处,KF1为正 即 6326´ < θ < 11634´ 在 -x 处,KF1为负 即24326´ < θ < 29634´ + θ1 + D θ2 + X + Coil 2 Coil 1 为什么要使用双线圈?

52 容易? 1 2

53 双线圈的配置 串联反接-检测线圈 VSM19 二次谐波(2ω)的贡献: Z 对于满足基频线圈几何因子所确定的串联反接双线圈, – +
二次谐波在该线圈对中的感应电动势等于零。 + 49°6´ + + X + 130°54´ 为什么要使用双线圈?

54 不用线圈如何? 使用磁场(自由空间磁通)传感器? 完全可以! 必须解决的问题: 能够扣除磁化磁场等杂散磁场的影响 必须可以即时响应磁通的变化
必须能够对磁矩进行定标 必须有满足测量要求的灵敏度

55 为什么使用四线圈? 鞍区-磁场-灵敏度 基于电磁铁的VSM: Z 高磁场使得极头间距变小,导致鞍区缩小
减小线圈之间的距离可以提高灵敏度,但鞍区缩小 四线圈可以使得鞍区扩大,但降低了灵敏度 X 为什么要使用四线圈?

56 振 动 样 品 磁 强 计 “鞍点区” VSM20 定义:对串联反接线圈,在样品所处磁场区的中心位置附近,
线圈中的感应电动势对样品位置不敏感的区域。 磁化方向 “鞍点区”的意义 样品的安装 位置调节 振动方向 横向方向 距离 为什么要调节鞍区?

57 什么时候需要调节鞍区? 任何时候!(除了测量进行之中) 磁矩定标时; 开始测量样品前 定义:对串联反接线圈,在样品所处磁场区的中心位置附近,
线圈中的感应电动势对样品位置不敏感的区域。 什么时候可以不用调节鞍区:样品处于位置不敏感区! 为什么要调节鞍区?

58 振 动 样 品 磁 强 计 磁矩的定标 电压有效值与磁矩的关系: VSM21
标准样品比磁化强度:σStandard;质量:mStandard 待测样品比磁化强度:σSample;质量:mSample 为什么要定标磁矩?

59 振 动 样 品 磁 强 计 振动样品磁强计的发展历史 前提:满足磁偶极子的条件 驱动:频率、振幅稳定 远离市电频率及其谐波
VSM22 振 动 样 品 磁 强 计 振动样品磁强计的发展历史 前提:满足磁偶极子的条件 驱动:频率、振幅稳定 远离市电频率及其谐波 测量:检测交流电压-非积分式

60 振 动 样 品 磁 强 计 振动样品磁强计的发展历史 VSM23
1956, G. W. van Oosterhout, Appl. Sci. Res., B6, (1956) 1956, S. Foner, Rev. Sci. Instrum., 27, 548 (1956) 1959, S. Foner, Rev. Sci. Instrum., 30, (1959) 1975, 被IEC(国际电工委员会)推荐为测量铁氧体材料 饱和磁化强度的标准方法之一 1960s,锁相放大技术(1930s)的使用 1980s,自动控制技术的广泛使用

61 VSM24 振 动 样 品 磁 强 计 振动样品磁强计的发展历史 相敏检波器 锁相放大器 X-Y记录仪 电子计算机

62 振 动 样 品 磁 强 计 振动样品磁强计的制造商(仅供参考) @EM @SCM 中国科学院物理研究所 吉林大学物理系 南京大学物理系
VSM25 振 动 样 品 磁 强 计 振动样品磁强计的制造商(仅供参考) 中国科学院物理研究所 吉林大学物理系 南京大学物理系 @EM 美国ADE Technologies, Inc. (DMS) 美国Lake Shore Cryotronics, (EG&G) 美国LDJ Electronics, Inc. 美国Quantum Design Co. (Oxford) @SCM

63 振 动 样 品 磁 强 计 振动样品磁强计的分类:(一) 具 体 类 型 样 品 尺 寸 大 小 振 动 方 向 通常与磁场平行
VSM26 振 动 样 品 磁 强 计 振动样品磁强计的分类:(一) 具 体 类 型 样 品 尺 寸 振 动 方 向 通常与磁场平行 通常与磁场垂直 样 品 振 幅 小(微振动) 感应电动势  磁通变化d/dt  磁矩m 常规基于电磁铁的VSM PPMS的VSM

64 振 动 样 品 磁 强 计 振动样品磁强计的分类:(二) 具 体 类 型 磁场来源 温度范围 振动方式 检测线圈 信号采集 控制方式
VSM27 振 动 样 品 磁 强 计 振动样品磁强计的分类:(二) 具 体 类 型 磁场来源 亥姆霍兹线圈 电磁铁 超导磁体 永磁体 温度范围 室 温/低 温/高 温 振动方式 机械驱动/电磁驱动 静电驱动 平行磁场 检测线圈 双线圈/四线圈 信号采集 相敏检波/锁相放大 控制方式 电子计算机 单片机 人工 存储处理 记录仪

65 振 动 样 品 磁 强 计 VSM的优点 VSM的缺点 1、非积分式-同步采集,无零漂移; 2、原理简单,使用方便,适用面广;
3、单点测量所需时间短; 4、灵敏度较高。 VSM的缺点 1、只能开路测量-退磁修正; 2、样品大小、位置影响测量结果。

66 VSM29 振 动 样 品 磁 强 计 相关参考文献 G. W. van Oosterhout, Appl. Sci. Res., B6, (1956) S. Foner, Rev. Sci. Instrum., 27, 548 (1956) S. Foner, Rev. Sci. Instrum., 30, (1959) S. Foner, Rev. Sci. Instrum., 45, 1181 (1974) S. Foner, Rev. Sci. Instrum., 46, 1425 (1975) A. Zieba and S. Foner, Rev. Sci. Instrum., 53, 1344 (1982) S. Foner, J. Appl. Phys., 38, 1510 (1967) S. Foner, J. Appl. Phys., 79, 4740 (1996)

67 课后作业-1 对于振动样品磁强计(VSM)来说, 在使用过程中,应该注意哪些事项?

68 VSM@EM的问题 1、镜像效应(Image Effect) 来源: (1) 极头磁化饱和所致。 (2) 线圈与极头的几何位置有关
H Hall磁强计 线圈信号=样品信号+电磁铁的镜像信号 磁矩定标是否受影响? 解决办法:1、不用极头;2、线圈远离极头;3、修正

69 VSM的灵敏度 灵敏度:取决于最小量程 影响信号检测的因素: 1、仪器本身的计量性能;2、样品架的本底信号 VSM31
一般来说,厂家给出的灵敏度无法在实际中达到。? 影响信号检测的因素: 1、仪器本身的计量性能;2、样品架的本底信号 尽量减小样品杆的信号 尽量使样品杆质量均匀

70 商品化VSM的灵敏度 Sensitivity ? ! m 2107 emu t 蒙人的灵敏度 20 min ~30 min

71 灵敏度的定义 灵敏度(sensitivity) 测量仪器响应的变化除以对应的激励变化 稳定性(stability)
测量仪器保持其计量特性随时间恒定的能力 鉴别力(discrimination, threshold) 使测量仪器产生未察觉的响应变化的最大激励变化,这种激励变化应缓慢而单调地进行。

72 商品化VSM的灵敏度 异常长测量时间内 空样品杆磁矩的算术平均值 实验标准偏差?

73 实验标准偏差 Bessel公式 n次测量结果:x1, x2, …, xi, …, xn 单次测量的分散性

74 样品的形状、尺寸、位置 Sample’s Shape, Size, Position

75 样品尺寸的理论处理 实际样品(几何尺寸) 检测线圈内的磁场强度: 检测线圈内的磁通量: VSM样品1
取自:U. Auerlechner, et al., Meas. Sci. Technol. 9 (1998)

76 样品与检测线圈的几何尺寸 参考文献 U. Ausserlechner, P. Kasperkovitz, and W. Steiner, “Pick-up systems for vibrating sample magnetometers – a theoretical discussion based on magnetic multipole expansions,” Meas. Sci. Technol., 5 (1994), A. C. Bruno and P. Costa Ribeiro, “Spatial Fourier calibration method for multichannel SQUID magnetometers,” Rev. Sci. Instrum., 62(4) (1991) P. Stamenov and J. M. D. Coey, “Sample size, position, and structure effects on magnetization measurements using second-order gradiometer pickup coils,” Rev. Sci. Instrum., 77 (2006) Quantum Design, “Accuracy of the reported moment: axial and radial sample positioning error,” Application Note Quantum Design, “Accuracy of the reported moment: sample shape effects,” Application Note

77 QD Application Note

78 QD Application Note

79 对样品的苛刻要求 根由、缘由、理由、自由 1、仪器设备的问题:没作好!!! 空间限制:线圈尺寸、距离 测量条件限制:温度、磁场
VSM样品2 对样品的苛刻要求 根由、缘由、理由、自由 1、仪器设备的问题:没作好!!! 空间限制:线圈尺寸、距离 测量条件限制:温度、磁场 2、样品本身的问题:适用性!!! 样品的磁矩信号:样品质量、体积 特定要求:性能、形状

80 VSM样品3 2、样品旋转:之一 鞍区

81 VSM样品4 2、样品旋转:之二 鞍区 M 鞍区 O H

82 VSM样品5 2、样品旋转:之三 鞍区 M 鞍区 O H

83 VSM@EM的问题 2、样品旋转:之三 VSM@EM的鞍区是多大?(必须知道) 四线圈 VSM样品6 x z y z x y
不是仪器设备的错 四线圈

84 VSM@EM的问题 3、变温: 真空?气氛保护? 磁场强度 温度的控制(稳定性、测量) 化学反应(氧化、氮化) 操作(样品杆)
变温炉的磁性影响 +

85 VSM@SCM的问题 1、样品位置:轴向偏移 QD:VSM@SCM系列 VSM样品8   + 二级梯度线圈
QD Application Note 二级梯度线圈

86 VSM@SCM的问题 1、样品位置:径向偏移 QD:VSM@SCM系列 VSM样品9   + 二级梯度线圈
QD Application Note + 二级梯度线圈

87 VSM@SCM的问题 1、样品位置:径向+轴向偏移 QD:VSM@SCM系列 VSM样品10   谁知道? + 二级梯度线圈
QD Application Note xxxx-xxx + 谁知道? 二级梯度线圈

88 VSM@SCM的问题 2、样品形状: PALLADIUM Reference Sample QD:磁性测量系列设备的标准参考样品
QD Application Note PALLADIUM Reference Sample 2.8 mm 3.8 mm

89 VSM样品12 QD Application Note

90 VSM样品13 偏小 偏大 + +

91 磁通量与点磁偶极子位置 二级梯度线圈:可以抵消均匀的背景 MPMS SVSM

92 International Sales Manager
关于SQUID_VSM的ppt 以下蓝色背景的幻灯片均来自 William L. Zoeckler International Sales Manager Quantum Design

93 After Bill of QD, 2006 MPMS SQUID VSM System Newest member of the MPMS family of SQUID Magnetometers

94 MPMS SQUID VSM System System Electronics Magnet power supply
After Bill of QD, 2006 MPMS SQUID VSM System System Electronics Magnet power supply VSM linear motor drive Commercial Computer (Not shown is the pump cabinet) Shielded nitrogen jacketed dewar

95 MPMS SQUID VSM Overview
After Bill of QD, 2006 MPMS SQUID VSM Overview The SQUID VSM is the latest member of the MPMS line of SQUID magnetometers. Offers SQUID sensitivity with the speed of a VSM Available in 7 tesla high homogeneity configuration Only a dc magnetometer that does not support other options Available now

96 MPMS SQUID VSM Benefits
After Bill of QD, 2006 MPMS SQUID VSM Benefits RapidTemp  is a innovative temperature control design that allows you to cool samples from room temperature to a stable 1.8 K in ~30 minutes QuickSwitch  offers you the ability to quickly and continuously ramp field, stabilize and acquire data up to 7 tesla New FastLab data acquisition combines Quantum Design’s dc SQUID sensor and novel Vibrating Sample Magnetometer technology

97 MPMS SQUID VSM Temperature Control
After Bill of QD, 2006 MPMS SQUID VSM Temperature Control Feature: RapidTemp Temperature Range: 1.8 K to 400 K Cooling Rate: 30 K/min (300 K to 10 K stable in 15 min.); 10 K/min (10 K to 1.8 K stable in 5 min.) Temperature Stability: +/- 0.5% Temperature Accuracy: lesser of +/- 1% or 0.5 K Sample Chamber I.D.: 9 mm

98 MPMS SQUID VSM Magnetic Field Control
After Bill of QD, 2006 MPMS SQUID VSM Magnetic Field Control Feature: QuickSwitch Magnetic Field Range: -70 kOe to +70 kOe Field Uniformity: 0.01% over 4 cm Field Charging Rate: 4 Oe/sec to 700 Oe/sec Field Charging Resolution: 0.33 Oe High-Tc Magnet Leads: Reduce Liquid Helium Boil-off 磁体电感:30 H; 磁体电源:3.0 V B/I Ratio:150 mT/A

99 MPMS SQUID VSM Measurements
After Bill of QD, 2006 MPMS SQUID VSM Measurements Feature: FastLab  Maximum DC moment: emu Sensitivity: < 1 x 10-8 zero field (4 sec. averaging); < 5 x kOe (4 sec. averaging) Variable drive amplitude: 0.1 to 5 mm (peak-to-peak) Variable drive frequency: 5 to 80 Hz (optimized at 28 Hz)

100 After Bill of QD, 2006 MPMS SQUID VSM Power Requirements: 190 VAC VAC; Hz; 1-phase Liquid Helium Usage: 4 liters/day (typical) liters per sample cooldown Liquid Helium Capacity: liters Liquid Nitrogen Usage: liters/day (typical) Liquid Nitrogen Capacity: 60 liters Maximum Hold Time: 12 days (typical)

101 Sensitivity After Bill of QD, 2006 NiFe thin film from NIST
The quality of moment versus field data, at 5 K for a NiFe thin film sample provided by NIST, is shown. The left inset illustrates the reproducibility in coming from 2 kOe to zero field. The right inset demonstrates in particular the small field setting resolution of the new SQUID-VSM magnet power supply. Data Acquisition The FastLab data acquisition combines Quantum Design’s dc SQUID sensor and novel Vibrating Sample Magnetometer technology thus providing the ability to achieve <1 x 10-8 emu sensitivity at zero magnet field with 4 second data averaging. Further noise reduction in the design allows this system to achieve an unprecedented <5 x 10-8 emu sensitivity with 4 second averaging at the full field of 7 tesla. NiFe thin film from NIST RMS noise < sec average

102 Speed and Sensitivity After Bill of QD, 2006 400 data points
A fast scan of the moment versus field, at 5 K for a NiFe thin film sample provided by NIST, is shown. The inset illustrates the speed of the measurement process and the higher resolution data at the lower fields. rough comparison of stable vs sweeping fields for 4-quadrant 1 tesla M(H) loop shows that stable mode presents a good “sensitivity vs time” tradeoff: stable (400 points) : sensitivity < 4e-8 emu ; time = 65 min sweeping 20 Oe/sec (2000 points) : sensitivity < 3e-7 emu ; time = 33 min Magnetization measurements Feature: SQUID based VSM FastLab™ Maximum DC moment: 10 emu Sensitivity: < 1 x 10-8 zero field (4 sec. averaging); < 5 x kOe (4 sec. averaging) Variable drive amplitude: yes Variable drive frequency: yes 400 data points < 10 sec for each data point

103 Field Control After Bill of QD, 2006
The versatility of the new SQUID-VSM magnet power supply is shown. Charging rate of 4 Oe per second can be achieved. Magnetic field control Feature: QuickSwitch™ Magnetic Field Range: -70 kOe to +70 kOe Field Uniformity: 0.01% over 4 cm Field Charging Rate: 4 Oe/sec to 700 Oe/sec Field Charging Resolution: 0.33 Oe zero field to 7 tesla in less than 2 minutes variable charging rate down to 4 Oersted per second

104 Temperature Control 10 K – 2 K 2 minutes 300 K - 10 K 10 minutes
After Bill of QD, 2006 Temperature Control 10 K – 2 K 2 minutes The cooling performance and low temperature stability of the SQUID-VSM is shown. In 10 minutes, the chamber goes from 300 K to a stable 10 K. From 10K to a stable base temperature of 1.8 K takes about 2 minutes. Temperature Control The MPMS SQUID VSM uses the newly designed RapidTemp an innovative temperature control design that allows you to cool samples from room temperature to a stable 1.8 K in 30 minutes. The temperature control insert of the MPMS SQUID VSM is a vacuum-insulated chamber into which cold helium can be drawn, through a variable flow valve, for purposes of cooling the sample chamber inside to temperatures as low as 1.8 K with pumped helium. A finely-tuned flow impedance and sophisticated temperature control software allows continuous operation at 1.8 K as well as smooth temperature control through the 4.2 K liquid helium boiling point. Heaters on the sample chamber can raise the temperature as high as 400 K. A thermal shield, anchored to a liquid nitrogen tank, intercepts heat from a warm sample chamber and minimizes consumption of liquid helium when operating at higher temperatures. By flattening the thermal gradient along the cold end of the temperature control insert, this shield also allows the entire insert to be constructed with a relatively short geometry, minimizing heat capacitance and enabling rapid temperature control. 300 K - 10 K 10 minutes temperature range: K

105 SQUID_VSM(M03组) Mössbauer 谱?

106 非常感谢 Joey Ye ! 补 M03组的SQUID_VSM的温度控制:满意?(2010.12.06)

107 M(T) Validate Thermometers
After Bill of QD, 2006 M(T) Validate Thermometers In order to validate the accuracy of the thermometry, a pure indium sample was mounted on a quartz paddle with GE7031 varnish. After cooling to 2 K, a very small field is applied to observe the superconducting transition. The accuracy of the thermometer and in particular the lack of frictional heating validate the low temperature measurement process. A % pure Indium wire sample (literature: Tc = 3.40 K)

108 Sensitive M(T) Transitions
After Bill of QD, 2006 Sensitive M(T) Transitions Change in moment is 1x10-7 emu In order to demonstrate the sensitivity for small changes in moment, the magnetization versus temperature is examined for a small piece of the thin wire used in the SQUID gradiometer. The wire was attached to a quartz paddle with GE 7031 varnish. The superconducting transition on the order of 1x10-7 emu is easily resolved. This is another confirmation of the validity for the thermometer calibration. A small segment of NbTi wire sample

109 Cold End of Probe Helium level meter Diode protection for magnet
After Bill of QD, 2006 Cold End of Probe Helium level meter Diode protection for magnet Magnet Control The MPMS SQUID VSM utilizes a 7 Tesla, superconducting, helium-cooled magnet and a hybrid digital/analog magnet controller designed specifically for the SQUID VSM to achieve precise, quiet control of the magnetic field. SQUID precision in a magnetic measurement requires a stable magnetic field. The SQUID VSM accomplishes rapid switching between charging and discharging states and stable fields with a unique superconducting switching element called the QuickSwitchTM (patent pending), which changes, between superconducting and normal states in less than one second. This allows rapid collection of high precision data. The high open state resistance and low thermal mass of the QuickSwitchTM design also helps to minimize liquid helium consumption when ramping magnetic field, as compared to more traditional superconducting persistent switch technology. Further aiding the instrument’s low helium consumption is the use of high temperature superconductor (HTS) magnet leads anchored to a liquid nitrogen tank. The nitrogen shield in this design absorbs a great deal of room temperature heat that would otherwise be conducted to the helium bath. Quantum Design is proud of the contributions made to HTS research and development, and is excited to announce its newest member of the MPMS family—to the benefit of future researchers. R&D probe has 2 SQUID capsules Uses dc SQUID (instead of rf SQUID as in XL)

110 Sample Holders fused silica paddle design centering washers (blue)
After Bill of QD, 2006 Sample Holders fused silica paddle design centering washers (blue) A couple of sample holder designs are illustrated. The top sample holder uses a quartz paddle design like the PPMS-VSM, only longer. To help with radial centering of the sample, a washer is placed at the end of the sample rod. This does not induce frictional heating at the lowest temperatures. The lower sample holder is a half-tube made of cartridge brass (Pb free) which clamps by spring force on cylindrical samples. Here, the QD palladium standard sample is mounted, and is adhered additionally with GE 7031 varnish. The diameter of the temperature control insert was selected to allow a 9 mm sample bore and to provide the smallest diameter pickup coils possible to optimize the magnetometer’s sensitivity. brass sample holder with Pd standard sample

111 Sample Centering Response Function
After Bill of QD, 2006 Sample Centering Response Function A centering curve of a sample with 1.5x10-5 emu signal at room temperature. The fit to a standard second order gradiometer is shown. Once centered, the vibrational amplitude is typically 2 millimeters. Standard second order gradiometer design

112 Operational Comparison
After Bill of QD, 2006 Operational Comparison Instrument MPMS SQUID VSM XL PPMS VSM 7T < 5x10-8 emu < 6x10-7 emu <3x10-6 emu 4-quad, 1 T, M(H) 500 data points 1.5 hours 24 hours 0.5 hours 300 K to 2 K stable < 0.5 hours 2 hours 3 hours Liters L-He / day < 4 l 7 l 4 l other options on platform • 800 K oven • SQUID-based cac • low field (0.1 G) • cryocooled • sample rotation • optic probe • open platform • 1000 K oven • cac , torque • heat capacity to 50 mK • thermal transport • AC/DC resist., Hall, I-V • Up to 16 T “4-quadrant M(H)” : +1 T to -1 T and back to +1 T. “500 data points”: PPMS VSM actually collects ~1800 points (1 sec average). “liters L-He/day” : considering that one M(H) loop was measured at 300 K and the system is left at 300 K for the remainder of the day. While each instrument has its particular strengths and weaknesses, the comparison for low temperature magnetization versus field loops is useful to demonstrate the new technology. Essentially, the SQUID-VSM gives you the relative increase in speed expected with the VSM detection while maintaining the SQUID level sensitivity. Efficiency in magnet charging and measurement time lead to great cost savings The combination of efficiency in magnet charging and the dramatic decrease in measurement time results in significantly lower consumption of helium. This ultimately gives substantial improvements to the operational costs, the number of samples analyzed and the main factor is dollars per data point.

113 MPMS SQUID VSM: Summary
After Bill of QD, 2006 MPMS SQUID VSM: Summary VSM dc SQUID sensor < 10-8 emu rms sensitivity at B=0 (4 second average) < 5 x 10-8 emu rms sensitivity at B = 7 T (4 sec average) QD-designed VSM linear motor drive Up to 5 VSM data points per second Magnet Oe/sec charging rate Charging to stable field in 1 second Temperature K 300 K to stable 2 K in < 30 minutes

114 MPMS SQUID VSM Future Options
After Bill of QD, 2006 MPMS SQUID VSM Future Options EverCool Dewar configuration 1000 K Oven Availability within 12 months

115 International Sales Manager
关于PPMS_VSM的ppt 以下幻灯片均来自 William L. Zoeckler International Sales Manager Quantum Design

116 Vibrating Sample Magnetometer (VSM)
After Bill of QD, 2006 Vibrating Sample Magnetometer (VSM)

117 Vibrating Sample Magnetometer (VSM)
After Bill of QD, 2006 Vibrating Sample Magnetometer (VSM) New VSM sample drive technology RMS Sensitivity of < 10-6 emu or 0.5% with 1 sec averaging (typical) Measurements to ~120 emu Complete measurement automation Easy to install and remove from the PPMS Optional 1000 K Oven

118 Vibrating Sample Magnetometer (VSM)
After Bill of QD, 2006 Vibrating Sample Magnetometer (VSM)

119 Design Features: Long-Throw Magnetic Linear Motor
After Bill of QD, 2006 Design Features: Long-Throw Magnetic Linear Motor 48-turn drive coil magnet banks ~6.4 cm travel Iron flux return plates 10-micron optical encoder F = I  B

120 Design Features: Control Area Network (CAN) Electronics’ Module
After Bill of QD, 2006 Design Features: Control Area Network (CAN) Electronics’ Module

121 After Bill of QD, 2006 VSM Sample Mounts

122 After Bill of QD, 2006 VSM Data

123 VSM Specifications After Bill of QD, 2006
Sensitivity: < 10-6 emu/tesla Noise Floor: 6 x 10-7 emu rms Accuracy: < 5 x 10-6 emu/tesla Oscillation Frequency: 40 Hz Oscillation Amplitude: 0.5 to 10 mm Data Rate (typical): 1 Hz Accuracy: 0.5% (using 2mm spherical sample) Largest Measurable Moment: ~ 120 emu Detection Coil Size: mm I.D. 10.2 mm I.D (Optional; with 3 x 10-6 emu/tesla sensitivity)

124 VSM Oven Stable temperature control from 300 to 1000 K
After Bill of QD, 2006 VSM Oven Stable temperature control from 300 to 1000 K Durable construction of the sample rod (carbon fiber) and sample holder (zirconia) Convenient, easy and strong sample mounting Minimized radiation heat leaks Sample holder Sample rod Top of sample rod with 5-pin connector

125 After Bill of QD, 2006 VSM Oven Data

126 VSM Oven Specifications
After Bill of QD, 2006 VSM Oven Specifications Range of Temperature: K RMS Sensitivity: < 10-5 emu or 0.5% Noise Floor: < 10-5 emu rms (H = 0) Accuracy: < 1 x 10-5 emu/ tesla Temperature Precision: 0.5 K Temperature Accuracy: 0.5% Requires High Vacuum Environment

127 VSM Ultra-Low Field Capability
After Bill of QD, 2006 VSM Ultra-Low Field Capability Cancels magnet remanent field for very low field measurements Available on the 7 & 9 tesla longitudinal PPMS systems Automated software controlled process for nulling the remanent field Achieve fields of ±0.1 gauss (typical)


Download ppt "中国科学院物理研究所  通用实验技术公共课程"

Similar presentations


Ads by Google