Download presentation
Presentation is loading. Please wait.
1
All things are difficult
before they are easy!
2
心急想喝热粥怎么办? 测体温要多长时间呢?
3
Chapter 3 Unsteady heat conduction 非稳态导热
4
Primary Contents Basic conceptions Lumped-heat-capacity system
集中的 热容 Analysis solution of 1-D system Transient heat flow in a semi-infinite solid 瞬时的 半无限大 Multidimensional systems
5
3-1 Introduction
6
本节要注意的问题 什么是非稳态导热?它有哪些特点? 什么是非稳态导热的正规状况阶段?这一阶段的特点是什么?
Bi数的物理意义是什么?Bi→0和Bi→∞分别表示了怎样的换热条件?
7
本节重点词汇 unsteady heat conduction non-regular regime regular regime
非稳态导热 non-regular regime 非正规状况阶段 regular regime 正规状况阶段
8
本节重点词汇 initial condition 初始条件 boundary condition 边界条件 Biot number 毕渥数
9
Definition Take into account the change in
temperature of the body with time. 你能举出一些非稳态导热的例子吗?
10
Temperature Distribution
△x t t1 x Non-regular regime 4 t 非正规状况阶段 3 t 2 t 1 t Regular regime 正规状况阶段
11
Heat Flow 注意: Φ Φ1 Φ2 (1)非稳态过程必然伴随着加热或冷却; (2)在垂直于热量传递方向上,每一截面热流量不相等;
(3)不能用热阻的方法进行定量分析。
12
Partial differential equation
tf h x t Initial condition 初始条件 Boundary condition
13
Biot Number & Temperature Distribution
毕渥数 一个很重要的 无量纲数… x t0 t∞ t Bi→∞ Bi→0 0<Bi<∞ τ1 τ2 τ3 τ1 τ2 τ3 τ1 τ2 τ3
14
a small hot copper ball coming out of an oven Bi→0 0<Bi<∞ a large roast in a oven
15
Example 现代微波炉加热物体的原理是利用高频电磁波使物体中的分子极化产生震荡,其结果是相当于物体中产生了一个接近于均匀分布的内热源;而一般烘箱是从物体的外表面进行接近于恒热流的加热,设把一块牛肉当作厚2δ的无限大平板, 试定性画出采用微波炉及烘箱对牛肉加热过程中的温度分布曲线(开始加热,加热过程中,及终了时刻)
16
[Solution] t t τ2 τ2 τ1 τ1 τ0 τ0 x x microwave baker
17
3-2 Lumped-heat-capacity method
求解非稳态问题的简化方法,很重要! 3-2 Lumped-heat-capacity method 集中参数法
18
本节要注意的问题 集中参数法的物理概念及数学上处理的特点 什么是时间常数?它与哪些参数有关?
在用热电偶测定气流的非稳态温度场时,怎样才能改善热电偶的温度响应特性? 集中参数法的使用条件;用集中参数法求解一维非稳态导热问题。
19
本节重点词汇 lumped-heat-capacity method Fourier number exponential curve
集中参数法 Fourier number 傅里叶数 exponential curve 指数曲线 time constant 时间常数
20
本节重点词汇 thermocouple applicability characteristic length 热电偶 适用性,适用范围
特征长度
21
Definition 内部导热热阻 The internal conduction resistance of the body is negligible in comparison with the external convection resistance. 可忽略的 x T0 T∞ T Bi→0 τ1 τ2 τ3 外部对流热阻 Uniform temperature in the body
22
Temperature distribution
Φ t ρ, c, λ t∞,h Thermal balance A - surface area V - vloume 初始条件 Initial condition Temperature distribution (3-6)
23
Dimension of So the dimension of is s exponential curve 指数曲线
1 Dimension of So the dimension of is s time constant 时间常数
24
Time constant τc 重要概念 When It is influenced by (V/A) , (ρc) ,and h
1 Time constant τc When 36.8% 1 It is influenced by (V/A) , (ρc) ,and h Application: thermocouple 热电偶 问题:某厂称其测温元件的时间常数为1秒,是否可信?
25
Temperature distribution
另一个很重要的 无量纲数… Fourier number 傅里叶数 Temperature distribution
26
Heat flow 在τ时刻 Transient heat flow 从τ=0到τ时刻之间 Total heat flow
27
Example 用热电偶测量气罐中气体的温度。热电偶的初始温度为20℃,与气体的表面传热系数为10W/(m2·K)。热电偶近似为球形,直径为0.2mm。已知热电偶:λ=67W/(m·K),ρ=7310kg/m3 , c=228J/(kg·K) 试计算插入10s后,热电偶的过余温度为初始过余温度的百分之几? 要使过余温度不大于初始过余温度的1%,需要多长时间?
28
这样做正确吗? [Solution] The time constant
The excessive temperature at τ=10s 这样做正确吗?
29
characteristic length
Applicability 适用性,适用范围 Method 1 characteristic length 特征长度 l = half thickness (for plane wall) l = radius (for cylinder and sphere)
30
Method 2 M= 1 (for plane wall) M= 1/2 (for cylinder)
lc=V/A M= (for plane wall) M= 1/ (for cylinder) M= 1/ (for sphere)
31
Example 用热电偶测量气罐中气体的温度。热电偶的初始温度为20℃,与气体的表面传热系数为10W/(m2·K)。热电偶近似为球形,直径为0.2mm。已知热电偶:λ=67W/(m·K),ρ=7310kg/m3 , c=228J/(kg·K) 试计算插入10s后,热电偶的过余温度为初始过余温度的百分之几? 要使过余温度不大于初始过余温度的1%,需要多长时间?
32
[Solution] Check the applicability of lamped parameters method or
34
例题3-2 一温度计的水银泡呈圆柱形,长20mm,内径为4mm,初始温度为t0,今将其插入到温度较高的储气罐中测量气体温度。设水银泡同气体间对流换热系数为h=11.63W/(m2·K),水银泡一层薄玻璃的作用可以忽略不计.水银的物性参数:λ=10.36W/(m·K);ρ=13110kg/m3; c=0.138kJ/(kg·K) 试计算此条件下温度计的时间常数,并确定插入5分钟后温度计读数的过余温度为初始过余温度的百分之几?
35
Solution <0. 1 Check the applicability of lumped-heat-capacity method
Time constant
36
Example To warm up some milk for a baby, a mother pours milk into a thin-walled glass whose diameter is 6cm. The height of the milk in the glass is 7cm. She then places the glass into a large pan tilled with hot water at 60℃. The milk is stirred constantly, so that its temperature is uniform at all times. If the heat transfer coefficient between the water and the glass is 120W/m2 ·℃, determine how long it will take for the milk to warm up from 3℃ to 38℃. Take the properties of the milk to be the same as those of water. Can the milk in this case be treated as a lumped system? 她把玻璃杯放入一个大的盛满60℃热水的平底锅中,并不断进行搅拌,使牛奶始终保持均匀的温度。 一位妈妈为孩子热牛奶,她把牛奶导入一个薄壁玻璃杯中 ,玻璃杯的直径为6cm,玻璃杯中牛奶的高度为7cm 。 The milk is stirred constantly, so that its temperature is uniform at all times. 假设牛奶的物性参数与水相同。这种情况下可以使用集中参数法吗? 如果水和玻璃杯间的表面传热系数为120W/m2 ·℃,确定牛奶从3℃加热到38℃需要的时间。
37
[Solution] Take the properties of the milk to be the same as those of water, from Appendix 9, we have The milk is stirred constantly, and its temperature is uniform at all times. The lumped parameter method is applicable.
38
So
39
The Biot and Fourier numbers
Biot number compares the relative magnitudes of internal conduction and surface convection resistances. Fourier number compares a characteristic body dimension with an approximate temperature-wave penetration depth for a given time τ . 穿透
40
不能用集总参数法的时候,就考虑这个吧……
重要! 3-3 Analysis solution of 1-dimensional system
41
本节要注意的问题 本节的使用条件 如何使用海斯勒图求解一维非稳态导热问题
42
本节重点词汇 infinite plane wall 无限大平板 Heisler Charts 海斯勒图
43
infinite plane wall 无限大平板 t0 τ0=0 δ -δ t∞ t h
44
mathematical representation
τ0=0 h h t∞ t∞ -δ δ
45
differential equation
τ0=0 initial condition h h t∞ boundary conditions t∞ -δ δ
46
solution regular regime stage —— Heisler Charts 海斯勒图
47
Heisler Charts temperature distribution heat flow θ=θ(x,τ)
θ0 - initial temperature θm – midplane temperature Figure3-8 (for plane wall) Appendix16 (for cylinder) Appendix17 (for sphere) Figure3-7 (for plane wall) Appendix16 (for cylinder) Appendix17 (for sphere) heat flow actual heat flow by the body in time τ maximum heat flow can be transferred in the total process
48
Example 1 一块厚100mm的钢板放入温度为1000℃的炉中加热, 钢板一面受热,另一面可以近似认为是绝热的。钢板初始温度为20℃。
求钢板受热表面温度达到500℃时所需的时间,并计算此时剖面上的最大温差。 取:h=174W/(m2·K),λ=34.8W/(m·K), a=0.555×10-5m2/s
49
[Solution] 0.8 2 From Figure 3-8 x/δ=0.2 0.4 0.6 0.8 0.01 100 1.0 0.2
0.2 10 x/δ=0.2 0.4 0.6 0.8 0.8 From Figure 3-8 2
50
Calculate tm Calculate θm/θ0
51
1.0 0.637 0.5 2.0 0.2 0.01 λ/hδ 0.1 2.0 1.2 1.8 1.2 1 1.5 2 2.5 From the Figure 3-7
52
Calculate τ The max temperature difference
53
一块初始温度为200℃厚度为5厘米的大铝板被突然放置在70℃的对流环境中,对流换热的表面传热系数为525 W/m2 ·℃.
计算当平板被暴露在这个环境中1分钟后,距离表面1.25厘米深处的温度。 Example 2 A large plate of aluminum 5.0 cm thick and initially at 200℃ is suddenly exposed to the convection environment of 70℃ with a heat-transfer coefficient of 525 W/m2 ·℃. Calculate the temperature at a depth of 1.25 cm from one of the faces 1 min after the plate has been exposed to the environment. 计算当平板被暴露在这个环境中1分钟后,距离表面1.25厘米深处的温度。 一块初始温度为200℃厚度为5厘米的大铝板被突然放置在70℃的对流环境中,对流换热的表面传热系数为525 W/m2 ·℃.
54
[Solution] Property values for aluminum From Table A-2
Check the applicability of Heisler Charts Calculate θm/θ0
55
700 1.0 150 30 4 0.5 0.01 0.2 λ/hδ 0.60 18 16 9.264 From Figure3-7
56
[Solution] Property values for aluminum From Table A-2
Check the applicability of Heisler Charts Calculate θm/θ0 Calculate θ/θm
57
1.0 1.0 x/δ=0.2 0.4 0.6 0.8 0.9 1.0 0.01 0.01 1.0 1.0 10 10 20 20 100 100 17.98 From Figure3-8
58
Calculate the temperature
59
3-4 Transient heat flow in a semi-infinite body
半无限大物体
60
本节要注意的问题 什么是半无限大物体 第一类边界条件下半无限大物体的非稳态导热问题
61
本节重点词汇 semi-infinite body 半无限大物体 error function 误差函数
62
什么是半无限大物体 从x=0的界面向x,y,z方向无限延伸,而在每一个与x轴垂直的截面上温度相等。
63
mathematical representation
tw Initial condition Boundary conditions t0 x error function 误差函数
64
error function = ò - 2 ) ( dv e x erf v p 2.0 1.0
65
3-5 Multidimensional systems
66
本节要注意的问题 多维非稳态导热的乘积解
67
本节重点词汇 Multidimensional Production solution method
多维的 Production solution method 乘积解法 Infinite rectangular bar 无限长方柱体 short cylinder 短圆柱 rectangular parallelpiped 立方体
68
Production solution method
乘积解法 z z x y y x x r applicability: t0 is constant uniform ambient temperature distribution
69
乘积解中温度必须以过余温度或无量纲过余温度的形式出现。
infinite rectangular bar short cylinder rectangular parallelpiped 立方体 乘积解中温度必须以过余温度或无量纲过余温度的形式出现。
70
Example 一个直径为5cm长度为10cm的短铝柱,初始温度为200℃,突然把它放入70℃的对流环境,此时 h=525 W/m2 ·℃。
A short aluminum cylinder 5.0 cm in diameter and 10.0 cm long is initially at a uniform temperature of 200℃. It is suddenly subjected to a convection environment at 70℃, and h=525 W/m2 ·℃. Calculate the temperature at a radial position of 1.25 cm and a distance of cm from one end of the cylinder 1 min after exposure to the environment? 计算1分钟后,位于直径1.25cm且距离其中一个端面0.625cm处的温度。 一个直径为5cm长度为10cm的短铝柱,初始温度为200℃,突然把它放入70℃的对流环境,此时 h=525 W/m2 ·℃。
71
[Solution] Property values for aluminum From Table A-2
For the infinite plate problem d 2δ Figure 3-7
72
Figure 3-8 d For the cylinder 2δ Appendix 16
73
Combining the solutions and calculate the temperature
Appendix 16 Combining the solutions and calculate the temperature
74
Example 1 有一根长为l的棒,初始有均匀温度t0,此后使其两端各维持在恒定的温度t1(x=0)及t2(x=l),并且t2>t1>t0。棒的四周保持绝热。试画出棒中温度分布随时间变化的示意性曲线及最终的温度分布曲线。
75
t τ t2 t1 t0 l x
76
Example 2 有两块同样材料的平板A和B,A的厚度为B的两倍,从同一高温炉中取出置于冷流体中淬火。流体与各表面间表面传热系数均可视为无限大。已知板B中心点的过余温度下降到初值的一半需要21min,问板A达到同样温度工况需要多少时间?
77
[Solution]
78
Example 3 某商场防排烟系统设置有火灾报警系统,其报警系统方式为导线熔断报警,已知该导线熔点温度为500℃,物性参数:λ=210W/(m·K),ρ=7200kg/m3, c=420J/(kg·K) 。初始温度为25℃, h=12W/(m2·K)。若要求该报警系统的导线在突然受到600℃烟气加热的情况下,1分钟内需发出报警信号,导线直径最大为多少?
79
[Solution] Assume lumped parameter method is applicable, so
80
The Biot number is Therefore, lumped parameter method is applicable. And the diameter of the wire is
81
Example 4 初温30℃,壁厚9mm的火箭发动机喷管,外壁绝热,内壁与温度为1750℃的高温燃气接触,燃气与壁面间h=2000W/(m2·K)。假定喷管壁可作为一维无限大平壁处理,材料物性如下:ρ=8400kg/m3, c=560J/(kg·K), λ=25W/(m·K)。 (1) 为使喷管材料不超过材料允许的800℃而能允许的运行时间; (2)在允许时间终了时刻,壁面中的最大温差; (3)上述时刻壁面中的平均温度梯度与最大温度梯度。
82
[Solution] (1) From figure 3-8 , we have So From figure 3-7 , we have
83
(2) The minimum temperature The maximum temperature difference (3) The average temperature gradient The maximum temperature gradient
84
作业 中文版: 3-9,3-54 英文版: 4-10,4-14
Similar presentations