Presentation is loading. Please wait.

Presentation is loading. Please wait.

Machine Learning & Bioinformatics

Similar presentations


Presentation on theme: "Machine Learning & Bioinformatics"— Presentation transcript:

1 Machine Learning & Bioinformatics
Tien-Hao Chang (Darby Chang) Machine Learning & Bioinformatics

2 Machine Learning & Bioinformatics
Final Project Machine Learning & Bioinformatics

3 Machine Learning & Bioinformatics
Official ideas Less creativity bonus, more work, more competitive… The goal is to find novel features. The first thing should be reducing the dimensions so that the performance of the novel features can observed. Next, observe and identify some drawbacks. the pair complement hasn’t been considered promoter and GO information haven’t been used Machine Learning & Bioinformatics

4 Machine Learning & Bioinformatics
Feature Selection 686 Features GO Promoter Sequence Data Fusion Final Features Feature Extraction Prediction Better Require RVKDE or SVM Machine Learning & Bioinformatics

5 Machine Learning & Bioinformatics
Summary Feature section: PCA/ICA, T-test, … Sequence: charge complement, … GO: binary, distance, … Promoter: neighbor, binary TF, … More: GO term/TF selection, … Machine Learning & Bioinformatics

6 一個細胞或者是物質移動到某個特定的區域 生物程序 運送 氣體運送 氧氣運送

7 細胞的組成 細胞 細胞的一部分 細胞內的 細胞質 細胞漿質 細胞漿質的一部分 血紅素 細胞內的一部分 細胞質的一部分

8 分子功能 運送活動 特定基質的運送活動 氧氣的運送活動

9 類鈣蛋白酶 胞紅蛋白 血紅蛋白alpha 血紅蛋白beta 血紅蛋白theta-1 細胞附著蛋白交換因子 腦紅蛋白

10 血紅蛋白alpha安定蛋白質 還原酵素 血紅蛋白alpha 血紅蛋白beta 血紅蛋白delta 血紅蛋白epsilon
血紅蛋白gamma-1 血紅蛋白gamma-2 血紅蛋白mu 血紅蛋白theta-1 血紅蛋白zeta 腦紅蛋白

11 胞紅蛋白 血紅蛋白alpha 血紅蛋白beta 血紅蛋白delta 血紅蛋白epsilon 血紅蛋白gamma-1 血紅蛋白gamma-2
血紅蛋白mu 血紅蛋白theta-1 血紅蛋白zeta 細胞附著蛋白交換因子 紅蛋白 腦紅蛋白


Download ppt "Machine Learning & Bioinformatics"

Similar presentations


Ads by Google