1 時 頻 分 析 近 年 來 的 發 展時 頻 分 析 近 年 來 的 發 展 丁 建 均 國立台灣大學電信工程學研究所 Recent Development of Time-Frequency Analysis.

Slides:



Advertisements
Similar presentations
1 Lecture 5 Properties of LTI Systems The Solution of LCCDE.
Advertisements

663 Chapter 14 Integral Transform Method Integral transform 可以表示成如下的積分式的 transform  kernel Laplace transform is one of the integral transform 本章討論的 integral.
Final Review Chapter 1 Discrete-time signal and system 1. 模拟信号数字化过程的原理框图 使用 ADC 变换器对连续信号进行采样的过程 使用 ADC 变换器对连续信号进行采样的过程 x(t) Analog.
第九章流媒体技术与小波变换(补充) 什么是流媒体?
數位訊號處理 第4章 離散時間訊號與LTI系統之傅利葉分析
生物医学信号处理.
資料探勘(Data Mining)及其應用之介紹
學生:林育暉 指導教授:蔣依吾 國立中山大學資訊工程學系
化學數學(一) The Mathematics for Chemists (I) (Fall Term, 2006) Department of Chemistry National Sun Yat-sen University.

Audio.
XI. Hilbert Huang Transform (HHT)
Leftmost Longest Regular Expression Matching in Reconfigurable Logic
Time and frequency domain
A TIME-FREQUENCY ADAPTIVE SIGNAL MODEL-BASED APPROACH FOR PARAMETRIC ECG COMPRESSION 14th European Signal Processing Conference (EUSIPCO 2006), Florence,
III. Gabor Transform III-A Definition Standard Definition:
3-3 Modeling with Systems of DEs
AN INTRODUCTION TO OFDM
小 波 分 析 浅 述 钟 彦 刘广裕 指导老师 苏 先 樾
IV. Implementation IV-A Method 1: Direct Implementation 以 STFT 為例
Applications of Digital Signal Processing
Rate and Distortion Optimization for Reversible Data Hiding Using Multiple Histogram Shifting Source: IEEE Transactions On Cybernetics, Vol. 47, No. 2,February.
期末考的範圍遠遠多於期中考,要了解的定理和觀念也非常多
XV. Applications of Wavelet Transforms
V. Homomorphic Signal Processing
XVI. Applications of Wavelet Transforms
Differential Equations (DE)
On Some Fuzzy Optimization Problems
期末考的範圍遠遠多於期中考,要了解的定理和觀念也非常多
GoldWave 音樂編輯軟體 -演算法與技巧- 學生: 冼達 指導教授: 丁建均 DISP, NTU 2018/11/20.
Time Frequency Analysis and Wavelet Transforms 時頻分析與小波轉換
§5.6 Hole-Burning and The Lamb Dip in Doppler- Broadened Gas Laser
X. Other Applications of Time-Frequency Analysis
信号与图像处理基础 An Introduction to Signal and Image Processing 中国科学技术大学 自动化系
II. Short-time Fourier Transform
機械波 Mechanical Waves Mechanical wave is a disturbance that travels through some material or substance called the medium for wave. Transverse wave is the.
無線通訊系統模擬 姓名:顏得洋 學號:B
聲轉電信號.
VI. Brief Introduction for Acoustics
Principle and Application of Digital Television
2012清大電資院學士班 「頂尖企業暑期實習」 經驗分享心得報告 實習企業:工業技術研究院 電光所 實習學生:電資院學士班  呂軒豪.
一般論文的格式 註:這裡指的是一般 journal papers 和 conference papers 的格式。
信号与图像处理基础 Adaptive Filter 中国科学技术大学 自动化系 曹 洋.
A high payload data hiding scheme based on modified AMBTC technique
Advanced Digital Signal Processing 高等數位訊號處理
第三章 付里叶分析 离散付氏级数的数学解释(The Mathematical Explanation of DFS)
資料結構 Data Structures Fall 2006, 95學年第一學期 Instructor : 陳宗正.
XIV. Orthogonal Transform and Multiplexing
VII. Data Compression (A)
3.5 Region Filling Region Filling is a process of “coloring in” a definite image area or region. 2019/4/19.
9.1 仿真概念和仿真操作步骤 9.2 常用仿真元件与激励源 9.3 仿真器的设置与运行
本 章 重 點 13-1 資訊系統簡介 13-2 企業內部常用資訊系統簡介.
虚 拟 仪 器 virtual instrument
运动学 第一章 chapter 1 kinematices.
第4章 连续时间傅立叶变换 The Continuous-Time Fourier Transform
X. Other Applications of Time-Frequency Analysis
XI. Hilbert Huang Transform (HHT)
96學年度第二學期電機系教學助理課後輔導進度表(三)(查堂重點)
(二)盲信号分离.
IV. Implementation IV-A Method 1: Direct Implementation 以 STFT 為例
96學年度第二學期電機系教學助理課後輔導進度表(一)(查堂重點)
Reversible Data Hiding in Color Image with Grayscale Invariance
本講義為使用「訊號與系統,王小川編寫,全華圖書公司出版」之輔助教材
第10章 离散小波变换的多分辨率分析 10.1 多分辨率分析的引入 10.2 多分辩率分析的定义 10.3 空间 、 中信号的分解
II. Short-time Fourier Transform
第三章时 域 分 析 引言 语音信号的短时处理方法 短时能量和短时平均幅度 短时平均过零率 短时自相关函数 短时时域处理技术应用举例
Surface wave dispersion measurements using Hilbert-Huang Transform
Principle and application of optical information technology
Gaussian Process Ruohua Shi Meeting
Hybrid fractal zerotree wavelet image coding
Presentation transcript:

1 時 頻 分 析 近 年 來 的 發 展時 頻 分 析 近 年 來 的 發 展 丁 建 均 國立台灣大學電信工程學研究所 Recent Development of Time-Frequency Analysis

2 一、什麼是時頻分析 (Time-Frequency Analysis) Fourier transform 不足的地方: Frequency Analysis: by Fourier transform (FT) 無法看出頻率隨著時間而改變的情形

3 x(t) = cos(440  t) when t < 0.5, x(t) = cos(660  t) when 0.5  t < 1, x(t) = cos(524  t) when t  1 The Fourier transform of x(t) Frequency Example 1

4 Short-Time Fourier Transform w(t): mask function 也稱作 windowed Fourier transform 或 time-dependent Fourier transform 例如:

5 Example: x(t) = cos(440  t) when t < 0.5, x(t) = cos(660  t) when 0.5  t < 1, x(t) = cos(524  t) when t  1 用 Gray level 來表示 X(t, f) 的 amplitude t–axis (Second) f -axis (Hertz)

6 瞬 時 頻 率 (Instantaneous Frequency) If then the instantaneous frequency is If the order of > 1, then instantaneous frequency varies with time

7 Example 2 t  [0, 3] 瞬 時 頻 率瞬 時 頻 率 (a) (b) 瞬 時 頻 率瞬 時 頻 率 t  [0, 3]

8 Fourier transform f (Hz)

9 Short-time Fourier transform

10 頻率會隨著時間而變化的例子: Frequency Modulation (FM) Signal Speech Music Others (Animal voice, Doppler effect, seismic waves, radar system, optics, rectangular function) In fact, in addition to sinusoid-like functions, the instantaneous frequencies of other functions will inevitably vary with time.

11 二、時頻分析的分類和發展歷史

12 時頻分析理論發展年表 AD 1785 The Laplace transform was invented AD 1812 The Fourier transform was invented AD 1822 The work of the Fourier transform was published AD 1910 The Haar Transform was proposed AD 1927 Heisenberg discovered the uncertainty principle AD 1929 The fractional Fourier transform was invented by Wiener AD 1932 The Wigner distribution function was proposed AD 1946 The short-time Fourier transform and the Gabor transform was proposed. (In the same year, the computer was invented) AD 1961 Slepian and Pollak found the prolate spheroidal wave function AD 1966 Cohen’s class distribution was invented

13 AD 1971 Moshinsky and Quesne proposed the linear canonical transform AD 1980 The fractional Fourier transform was re-invented by Namias AD 1981 Morlet proposed the wavelet transform AD 1982 The relations between the random process and the Wigner distribution function was found by Martin and Flandrin AD 1988 Mallat and Meyer proposed the multiresolution structure of the wavelet transform; In the same year, Daubechies proposed the compact support orthogonal wavelet AD 1989 The Choi-Williams distribution was proposed; In the same year, Mallat proposed the fast wavelet transform AD 1990 The cone-Shape distribution was proposed by Zhao, Atlas, and Marks AD 1993 Mallat and Zhang proposed the matching pursuit; In the same year, the rotation relation between the WDF and the fractional Fourier transform was found by Lohmann

14 AD 1994 The applications of the fractional Fourier transform in signal processing were found by Almeida, Ozaktas, Wolf, Lohmann, and Pei AD 1995 L. J. Stankovic, S. Stankovic, and Fakultet proposed the pseudo Wigner distribution AD 1996 Stockwell, Mansinha, and Lowe proposed the S transform AD 1998 N. E. Huang proposed the Hilbert-Huang transform AD 1999 Candes, Donoho, Antoine, Murenzi, and Vandergheynst proposed the directional wavelet transform AD 2000 The standard of JPEG 2000 was published by ISO AD 2002 Stankovic proposed the time frequency distribution with complex arguments AD 2003 Pinnegar and Mansinha proposed the general form of the S transform AD 2007 The Gabor-Wigner transform was proposed by Pei and Ding

15 時頻分析理論的五大家族 (1) Short-Time Fourier transform 家族 (2) Wigner distribution function 家族 (3) Wavelet transform 家族 (4) Time-Variant Basis Expansion 家族 (5) Hilbert-Huang transform 家族

16 時頻分析的大家族 (1) Short-time Fourier transform (STFT) (rec-STFT, Gabor, …) square spectrogram improve S transform (2) Wigner distribution function (WDF) combine Gabor-Wigner Transform improve windowed WDF improve Cohen’s Class Distribution (Choi-Williams, Cone-Shape, Page, Levin, Kirkwood, Born-Jordan, …) improve Pseudo L-Wigner Distribution (4) Time-Variant Basis Expansion Matching Pursuit Prolate Spheroidal Wave Function (5) Hilbert-Huang Transform (3) Wavelet transform Haar and Daubechies Coiflet, Morlet Directional Wavelet Transform ( 唯一跳脫 Fourier transform 的架構 ) Asymmetric STFT

17 (1) Short-Time Fourier Transform (2) Wigner Distribution Function

18 Simulations x(t) = cos(2  t) by WDF by short-time Fourier transform f-axis t-axis

19 (3) Wavelet Transform x 1,L [n] x 1,H [n] g[n] x[n]x[n] h[n]  2 x[n] 的低頻成份 x[n] 的高頻成份 lowpass filter highpass filter down sampling xL[n]xL[n] xH[n]xH[n] N-points L-points

20 例子: 2-point Haar wavelet g[n] = 1/2 for n = −1, 0 g[n] = 0 otherwise h[0] = 1/2, h[−1] = −1/2, h[n] = 0 otherwise n g[n] ½ n h[n] ½ -½ then ( 兩點平均 )( 兩點之差 )

21 x[m, n] g[n]g[n] h[n]h[n]  2 along n v 1,L [m, n] v 1,H [m, n] g[m]g[m] h[m]h[m] along m  2 x 1,L [m, n]  2 along m x 1,H1 [m, n] g[m]g[m] h[m]h[m] along m  2 x 1,H2 [m, n] x 1,H3 [m, n] 2-D 的情形 m 低頻, n 低頻 m 高頻, n 低頻 m 低頻, n 高頻 m 高頻, n 高頻 L-points M ×N n m

22 原影像 2-D DWT 的結果 x 1,L [m, n] x 1,H1 [m, n] x 1,H2 [m, n] x 1,H3 [m, n]

23 3 次 2-D DWT 的結果

24 三、時頻分析近年來的發展 (1) Problem about Computation Time (2) New Time-Frequency Analysis Tool Asymmetric short-time Fourier transform Hilbert-Huang transform Gabor-Wigner transform Directional Wavelet transform (3) New Applications Adaptive sampling theory Biology S transform Adaptive filter design

Problem about Computation Time (1) 對於許多信號的時頻分佈而言 和之間有高度的相關性 (2) 可預測瞬時頻率的位置 大部分信號瞬時頻率都偏低頻 且只要是由樂器或生物聲帶產生的信號,都會有 「倍頻」的現象 “Adaptive interval” and “interpolation”

26 Short-time Fourier transform of a music signal   = 1/44100 ( 總共有  sec + 1 = 點

27 with adaptive output sampling intervals

28 時頻分析的大家族 (1) Short-time Fourier transform (STFT) (rec-STFT, Gabor, …) square spectrogram improve S transform (2) Wigner distribution function (WDF) combine Gabor-Wigner Transform improve windowed WDF improve Cohen’s Class Distribution (Choi-Williams, Cone-Shape, Page, Levin, Kirkwood, Born-Jordan, …) improve Pseudo L-Wigner Distribution (4) Time-Variant Basis Expansion Matching Pursuit Prolate Spheroidal Wave Function (5) Hilbert-Huang Transform (3) Wavelet transform Haar and Daubechies Coiflet, Morlet Directional Wavelet Transform ( 唯一跳脫 Fourier transform 的架構 ) Asymmetric STFT

Asymmetric Short-Time Fourier Transform Short-Time Fourier Transform 通常 w(t) 是左右對稱的 但是在某些應用 ( 例如地震波的偵測 ) 使用非對稱的 window 會有較好的效果

S Transform [Ref] R. G. Stockwell, L. Mansinha, and R. P. Lowe, “Localization of the complex spectrum: the S transform,” IEEE Trans. Signal Processing, vol. 44, no. 4, pp. 998–1001, Apr 比較:原本的 short-time Fourier transform 當 w(t) = exp(  t 2 ) 時 f , window width  f , window width 

31 x(t) = cos(  t) when t < 10, x(t) = cos(3  t) when 10  t < 20, x(t) = cos(2  t) when t  20 Using the short-time Fourier transform

32 x(t) = cos(  t) when t < 10, x(t) = cos(3  t) when 10  t < 20, x(t) = cos(2  t) when t  20 Using the S transform

Gabor-Wigner Transform 如何同時達成 (1) high clarity (2) no cross-term 的目標? by WDF by short-time Fourier transform f-axis t-axis cos(2  t)

34 Short-time Fourier transform Wigner [Ref] S. C. Pei and J. J. Ding, “Relations between Gabor transforms and fractional Fourier transforms and their applications for signal processing,” IEEE Trans. Signal Processing, vol. 55, no. 10, pp , Oct

Directional Wavelet Transform Wavelet transform 未必要沿著 x, y 軸來做  curvelet  contourlet  bandlet  shearlet  Fresnelet  wedgelet  brushlet

36  Bandlet 根據物體的紋理或邊界,來調整 wavelet transforms 的方向 Stephane Mallet and Gabriel Peyre, "A review of Bandlet methods for geometrical image representation," Numerical Algorithms, Apr

Hilbert-Huang Transform ( 國產 ) 時頻分析,何必要用到那麼複雜的數學? (Step 2) Find the local peaks y(t) (Step 1) Initial: y(t) = x(t), (x(t) is the input) n = 1, k = 1 為中研院黃鍔院士於 1998 年提出

38 (Step 3) Connect local peaks IMF 1; iteration 0 通常使用 B-spline ,尤其是 cubic B-spline 來連接

39 (Step 4) Find the local dips (Step 5) Connect the local dips

40 (Step 6-1) Compute the mean (pink line) (Step 6-2) Compute the residue

41 Step 7 Repeat Steps 1-6 to determine the intrinsic mode function (IMF) Step 8 Repeat Steps 1-7 to further determine x(t) Step 9 Determine the instantaneous frequency for each IMF (just calculating the number of zero-crossing during [t-1/2, t+1/2])

42 Example After Step 6

43 IMF1 IMF2 x0(t)x0(t) 趨勢

Application: Adaptive Sampling Nyquist rate:  t < 1/2B B: bandwidth

45 重要定理: Number of sampling points == Area of time frequency distribution

Application: Adaptive Filter Design Adaptive cutoff

Applications in Biology Data source: Whale voice

48 四、結 論 (1) 由於計算速度的大幅提升,使得使用「時頻分析」來取代「傅立葉轉 換」來做信號分析變得更加可行 (2) 時頻分析新理論和新應用的發展,有待大家共同努力 所有傅立葉轉換的應用 都將會是時頻分析的應用 投影片下載網址: